
1© 2007 Bernd Bruegge Introduction to Software Engineering SS 2007

Modeling with UML:
Basic Notations II

Prof. Bernd Bruegge, Ph.D.
Applied Software Engineering

Technische Universitaet Muenchen

Introduction to Software Engineering Lecture 3
24 April 2007

2© 2007 Bernd Bruegge Introduction to Software Engineering SS 2007

Outline of this Class

• Use case diagrams
• Describe the functional behavior of the system as seen

by the user

• Class diagrams
• Describe the static structure of the system: Objects,

attributes, associations

• Sequence diagrams
• Describe the dynamic behavior between objects of the

system

• Statechart diagrams
• Describe the dynamic behavior of an individual object

• Activity diagrams
• Describe the dynamic behavior of a system, in

particular the workflow.

3© 2007 Bernd Bruegge Introduction to Software Engineering SS 2007

Miscellaneous

• May 1st is a holiday (Tag der Arbeit)
• No lecture on Tuesday, Mai 1st

• No exercise sessions on April 30th and Mai 1s

• Student certificates
• If your certificate was issued before March 2007, your

certificate expires on May 31, 2007.
• New passwords can be obtained by

• Frau auf der Landwehr
• Normal Opening times: see

• http://wwwsbs.in.tum.de/personen/adland
• Additional Opening times:

• Mo-Mi 11:00-12:00
• Do: 13:00-14:00.

What is UML? Unified Modeling Language
• Convergence of different notations used in object-

oriented methods, mainly
• OMT (James Rumbaugh and collegues), OOSE (Ivar

Jacobson), Booch (Grady Booch)

• They also developed the Rational Unified Process,
which became the Unified Process in 1999

25 year at GE Research,
where he developed OMT,
joined (IBM) Rational in
1994, CASE tool OMTool

At Ericsson until 1994,
developed use cases and the
CASE tool Objectory, at IBM
Rational since 1995,
http://www.ivarjacobson.com

Developed the
Booch method
(“clouds”), ACM
Fellow 1995, and
IBM Fellow 2003
http://www.booch.
com/

5© 2007 Bernd Bruegge Introduction to Software Engineering SS 2007

UML

• Nonproprietary standard for modeling systems
• Current Version 2.0

• Information at the OMG portal http://www.uml.org/

• Commercial tools:
• Rational (IBM),Together (Borland), Visual Architect (Visual

Paradigm), Enterprise Architect (Sparx Systems)

• Open Source tools http://www.sourceforge.net/
• ArgoUML, StarUML, Umbrello (for KDE), PoseidonUML

• Research Tool used at our chair: Sysiphus
• Based on a unified project model for modeling,

collaboration and project organization
• http://sysiphus.in.tum.de/.

6© 2007 Bernd Bruegge Introduction to Software Engineering SS 2007

UML: First Pass

• You can solve 80% of the modeling problems by
using 20 % UML

• We teach you those 20%
• 80-20 rule: Pareto principle

Vilfredo Pareto, 1848-1923
Introduced the concept of Pareto

Efficiency,
Founder of the field of microeconomics.

7© 2007 Bernd Bruegge Introduction to Software Engineering SS 2007

UML First Pass

• Use case diagrams
• Describe the functional behavior of the system as seen

by the user

• Class diagrams
• Describe the static structure of the system: Objects,

attributes, associations

• Sequence diagrams
• Describe the dynamic behavior between objects of the

system

• Statechart diagrams
• Describe the dynamic behavior of an individual object

• Activity diagrams
• Describe the dynamic behavior of a system, in

particular the workflow.

8© 2007 Bernd Bruegge Introduction to Software Engineering SS 2007

UML Core Conventions

• All UML diagrams denote graphs of nodes and
edges

• Nodes are entities and drawn as rectangles or ovals
• Rectangles denote classes or objects (instances)
• Ovals denote functions

• Names of classes are not underlined
• SimpleWatch
• Firefighter

• Names of instances are underlined
• myWatch:SimpleWatch
• Joe:Firefighter

• An edge between two nodes denotes a
relationship between the corresponding entities

• Relationships between classes are called associations.

9© 2007 Bernd Bruegge Introduction to Software Engineering SS 2007

UML first pass: Use case diagrams

WatchUser

Actor

Use casePackage
 Watch

Use case diagrams represent the functionality of the system
from user’s point of view

ReadTime

SetTime

ChangeBattery

WatchRepairPerson

10© 2007 Bernd Bruegge Introduction to Software Engineering SS 2007

UML first pass: Class diagrams

Class
Association

Multiplicity

Class diagrams represent the structure of the system

2
1 1

1
1

1
1

2

SimpleWatch

Display Battery TimePushButton

11© 2007 Bernd Bruegge Introduction to Software Engineering SS 2007

UML first pass: Class diagrams

1
2

push()
release()

1

1

blinkIdx
blinkSeconds()
blinkMinutes()
blinkHours()
stopBlinking()
referesh()

LCDDisplay Battery
Load

1

2

1

Time
Now

1

Watch

Operations

state
PushButton

Attribute

Class diagrams represent the structure of the system

Class
Association

Multiplicity

12© 2007 Bernd Bruegge Introduction to Software Engineering SS 2007

Message

UML first pass: Sequence diagram

:Time :Watch:WatchUser

Object

Activation

Sequence diagrams represent the behavior of a system
as messages (“interactions”) between different objects

Actor

pressButton1()

Lifeline

blinkHours()

pressButton2()
incrementMinutes()

:LCDDisplay

pressButton1and2()
commitNewTime()

stopBlinking()

refresh()

pressButton1()
blinkMinutes()

13© 2007 Bernd Bruegge Introduction to Software Engineering SS 2007

UML first pass: Statechart diagram State
Initial state

Final state

Transition

Event

Represents behavior of a single object with interesting
dynamic behavior.

button1&2Pressed button2Pressed
Increment
Minutes

button2Pressed
Increment
Hours

Blink
Hours

button1Pressed

Blink
Minutes

button2Pressed

button1Pressed

Blink
Seconds

Increment
Seconds

button1&2Pressed

Stop
Blinking

14© 2007 Bernd Bruegge Introduction to Software Engineering SS 2007

Other UML Notations

UML provides many other notations

• Activity diagrams for modeling work flows
• Deployment diagrams for modeling

configurations (for testing and release
management)

What should be done first? Coding or
Modeling?

• It all depends….
• Forward Engineering

• Creating the code from a model
• Start with modeling
• Greenfield projects

• Reverse Engineering
• Creation of a model from existing code
• Interface or reengineering projects

• Roundtrip Engineering
• Move constantly between forward and reverse

engineering
• Reengineering projects
• Useful when requirements, technology and schedule

are changing frequently.

16© 2007 Bernd Bruegge Introduction to Software Engineering SS 2007

UML Basic Notation: First Summary

• UML provides a wide variety of notations for
modeling many aspects of software systems

• We concentrate on a few notations:
• Functional model: Use case diagram
• Object model: Class diagram
• Dynamic model: Sequence diagrams, statechart

• Now we go into a little bit more detail…

17© 2007 Bernd Bruegge Introduction to Software Engineering SS 2007

UML Use Case Diagrams

An Actor represents a role, that
is, a type of user of the system

Passenger

PurchaseTicket

Used during requirements elicitation
and analysis to represent external
behavior (“visible from the outside of
the system”)

Use case model:
The set of all use cases that
completely describe the
functionality of the system.

A use case represents a class of
functionality provided by the system

18© 2007 Bernd Bruegge Introduction to Software Engineering SS 2007

Actors

• An actor is a model for an external
entity which interacts
(communicates) with the system:

• User
• External system (Another system)
• Physical environment (e.g. Weather)

• An actor has a unique name and an
optional description

• Examples:
• Passenger: A person in the train
• GPS satellite: An external system that

provides the system with GPS
coordinates.

Passenger

Name

Optional
Description

19© 2007 Bernd Bruegge Introduction to Software Engineering SS 2007

Use Case
• A use case represents a class of

functionality provided by the
system

• Use cases can be described
textually, with a focus on the
event flow between actor and
system

• The textual use case description
consists of 6 parts:
1. Unique name
2. Participating actors
3. Entry conditions
4. Exit conditions
5. Flow of events
6. Special requirements.

PurchaseTicket

20© 2007 Bernd Bruegge Introduction to Software Engineering SS 2007

Textual Use Case
Description Example
4 24 2007
1. Name: Purchase ticket

2. Participating actor:
Passenger

3. Entry condition:
• Passenger stands in front

of ticket distributor
• Passenger has sufficient

money to purchase ticket

4. Exit condition:
• Passenger has ticket

5. Flow of events:
1. Passenger selects the

number of zones to be
traveled

2. Ticket Distributor
displays the amount due

3. Passenger inserts
money, at least the
amount due

4. Ticket Distributor returns
change

5. Ticket Distributor issues
ticket

6. Special requirements:
None.

Passenger PurchaseTicket

21© 2007 Bernd Bruegge Introduction to Software Engineering SS 2007

Uses Cases can be related

• Extends Relationship
• To represent seldom invoked use cases or exceptional

functionality

• Includes Relationship
• To represent functional behavior common to more than

one use case.

22© 2007 Bernd Bruegge Introduction to Software Engineering SS 2007

The <<extends>> Relationship
• <<extends>> relationships

model exceptional or seldom
invoked cases

• The exceptional event flows
are factored out of the main
event flow for clarity

• The direction of an
<<extends>> relationship is to
the extended use case

• Use cases representing
exceptional flows can extend
more than one use case.

Passenger

PurchaseTicket

TimeOut

<<extends>>

NoChange

<<extends>>OutOfOrder

<<extends>>

Cancel

<<extends>>

23© 2007 Bernd Bruegge Introduction to Software Engineering SS 2007

The <<includes>> Relationship
• <<includes>> relationship

represents common
functionality needed in more
than one use case

• <<includes>> behavior is
factored out for reuse, not
because it is an exception

• The direction of a
<<includes>> relationship is
to the using use case (unlike
the direction of the
<<extends>> relationship).

Passenger

PurchaseSingleTicket

PurchaseMultiCard

<<includes>>

CollectMoney

<<includes>>

NoChange

<<extends>>

TimeOut

<<extends>>

Cancel

<<extends>>

24© 2007 Bernd Bruegge Introduction to Software Engineering SS 2007

Class Diagrams

• Class diagrams represent the structure of the
system

• Used
• during requirements analysis to model application

domain concepts
• during system design to model subsystems
• during object design to specify the detailed behavior

and attributes of classes.

Table zone2price
Enumeration getZones()
Price getPrice(Zone)

TarifSchedule

* *

Trip
zone:Zone

Price: Price

25© 2007 Bernd Bruegge Introduction to Software Engineering SS 2007

Classes

• A class represents a concept
• A class encapsulates state (attributes) and behavior

(operations)

Table zone2price
Enumeration getZones()
Price getPrice(Zone)

TarifSchedule

zone2price
getZones()
getPrice()

TarifSchedule

Name

Attributes

Operations

Signature

TarifSchedule

The class name is the only mandatory information

Each attribute has a type
Each operation has a signature

Type

26© 2007 Bernd Bruegge Introduction to Software Engineering SS 2007

Instances

• An instance represents a phenomenon
• The attributes are represented with their values
• The name of an instance is underlined
• The name can contain only the class name of the instance

(anonymous instance)

zone2price = {
{‘1’, 0.20},
{‘2’, 0.40},
{‘3’, 0.60}}

tarif2006:TarifSchedule
zone2price = {
{‘1’, 0.20},
{‘2’, 0.40},
{‘3’, 0.60}}

:TarifSchedule

27© 2007 Bernd Bruegge Introduction to Software Engineering SS 2007

Actor vs Class vs Object

• Actor
• An entity outside the system to be modeled,

interacting with the system (“Passenger”)

• Class
• An abstraction modeling an entity in the application or

solution domain
• The class is part of the system model (“User”, “Ticket

distributor”, “Server”)

• Object
• A specific instance of a class (“Joe, the passenger who

is purchasing a ticket from the ticket distributor”).

28© 2007 Bernd Bruegge Introduction to Software Engineering SS 2007

Associations

Associations denote relationships between classes

Price
Zone

Enumeration getZones()
Price getPrice(Zone)

TarifSchedule TripLeg

* *

The multiplicity of an association end denotes how many
objects the instance of a class can legitimately reference.

29© 2007 Bernd Bruegge Introduction to Software Engineering SS 2007

1-to-1 and 1-to-many Associations

1-to-1 association

1-to-many association

Polygon

draw()

Point

x: Integer

y: Integer

*

Country

name:String

City

name:String

11

30© 2007 Bernd Bruegge Introduction to Software Engineering SS 2007

Many-to-Many Associations

StockExchange

Company

tickerSymbol**

31© 2007 Bernd Bruegge Introduction to Software Engineering SS 2007

From Problem Statement To Object Model

Class Diagram:

StockExchange Company

tickerSymbol
Lists

**

Problem Statement: A stock exchange lists many companies.
Each company is uniquely identified by a ticker symbol

32© 2007 Bernd Bruegge Introduction to Software Engineering SS 2007

From Problem Statement to Code

Problem Statement : A stock exchange lists many companies.
Each company is identified by a ticker symbol

Class Diagram:

 private Vector m_Company = new Vector();

 public int m_tickerSymbol;
 private Vector m_StockExchange = new Vector();

public class StockExchange
{

};

public class Company
{

};

Java Code

StockExchange Company

tickerSymbolLists
**

Associations
are mapped to

Attributes!

33© 2007 Bernd Bruegge Introduction to Software Engineering SS 2007

Aggregation
• An aggregation is a special case of association denoting

a “consists-of” hierarchy
• The aggregate is the parent class,

the components are the children classes

Exhaust system

Muffler
diameter

Tailpipe
diameter

1 0..4

TicketMachine

ZoneButton
3

A solid diamond denotes composition: A strong form of
aggregation where the life time of the component instances is
controlled by the aggregate (“the whole controls/destroys the
parts”)

34© 2007 Bernd Bruegge Introduction to Software Engineering SS 2007

Qualifiers

• Qualifiers can be used to reduce the multiplicity
of an association

Directory
File

filename

Without qualification
1 *

With qualification

0..1
Directory File

1
filename

35© 2007 Bernd Bruegge Introduction to Software Engineering SS 2007

Qualification (2)

*StockExchange
CompanyLists *tickerSymbol

1

StockExchange

Company

tickerSymbol
Lists

**

36© 2007 Bernd Bruegge Introduction to Software Engineering SS 2007

Inheritance

• Inheritance is another special case of an
association denoting a “kind-of” hierarchy

• Inheritance simplifies the analysis model by
introducing a taxonomy

• The children classes inherit the attributes and
operations of the parent class.

Button

ZoneButtonCancelButton

37© 2007 Bernd Bruegge Introduction to Software Engineering SS 2007

Packages

• Packages help you to organize UML models to
increase their readability

• We can use the UML package mechanism to
organize classes into subsystems

• Any complex system can be decomposed into
subsystems, where each subsystem is modeled as
a package.

Account

CustomerBank

38© 2007 Bernd Bruegge Introduction to Software Engineering SS 2007

Object Modeling in Practice

Class Identification: Name of Class, Attributes and Methods

Is Foo the right name?

Foo

Amount
CustomerId

Deposit()
Withdraw()
GetBalance()

39© 2007 Bernd Bruegge Introduction to Software Engineering SS 2007

Object Modeling in Practice: Brainstorming

Foo

Amount
CustomerId

Deposit()
Withdraw()
GetBalance()

Account

Amount
CustomerId

Deposit()
Withdraw()
GetBalance()Is Foo the right name?

“Dada”

Amount
CustomerId

Deposit()
Withdraw()
GetBalance()

40© 2007 Bernd Bruegge Introduction to Software Engineering SS 2007

Object Modeling in Practice: More classes

Account

Amount

Deposit()
Withdraw()
GetBalance()

Customer

Name
CustomerId

CustomerIdAccountIdBank

Name

1) Find New Classes
2) Review Names, Attributes and Methods

41© 2007 Bernd Bruegge Introduction to Software Engineering SS 2007

Object Modeling in Practice: Associations

Account

Amount

Deposit()
Withdraw()
GetBalance()

Customer

Name
CustomerId

CustomerIdAccountIdAccountIdBank

Name

1) Find New Classes
2) Review Names, Attributes and Methods

3) Find Associations between Classes

owns

4) Label the generic assocations

6) Review associations

*
2

*?
has

5) Determine the multiplicity of the assocations

42© 2007 Bernd Bruegge Introduction to Software Engineering SS 2007

Practice Object Modeling: Find Taxonomies

Savings
Account

Withdraw()

Checking
Account

Withdraw()

Mortgage
Account

Withdraw()

Account

Amount

Deposit()
Withdraw()
GetBalance()

CustomerIdAccountIdAccountId

Customer

Name

CustomerId()

Has*
Bank

Name
*

43© 2007 Bernd Bruegge Introduction to Software Engineering SS 2007

Practice Object Modeling: Simplify, Organize

Savings
Account

Withdraw()

Checking
Account

Withdraw()

Mortgage
Account

Withdraw()

Account

Amount

Deposit()
Withdraw()
GetBalance()

CustomerIdAccountIdAccountId
Show Taxonomies

separately

44© 2007 Bernd Bruegge Introduction to Software Engineering SS 2007

Practice Object Modeling: Simplify, Organize

Customer

Name

CustomerId()

Account

Amount

Deposit()
Withdraw()
GetBalance()

CustomerIdAccountIdAccountId

Bank

Name Has**

Use the 7+-2 heuristics
or 5+-2!

45© 2007 Bernd Bruegge Introduction to Software Engineering SS 2007

Sequence Diagrams

• Used during analysis
• To refine use case descriptions
• to find additional objects

(“participating objects”)

• Used during system design
• to refine subsystem interfaces

• Instances are represented by
rectangles. Actors by sticky
figures

• Lifelines are represented by
dashed lines

• Messages are represented by
arrows

• Activations are represented
by narrow rectangles.

selectZone()

pickupChange()

pickUpTicket()

insertCoins()

FooPassenger

Focus on
Controlflow

Messages ->
Operations on

 participating Object

zone2price
selectZone()
insertCoins()
pickupChange()
pickUpTicket()

Foo

46© 2007 Bernd Bruegge Introduction to Software Engineering SS 2007

Sequence Diagrams can also model the
Flow of Data

• The source of an arrow indicates the activation which sent
the message

• Horizontal dashed arrows indicate data flow, for example
return results from a message

Passenger

selectZone()

ZoneButton TarifSchedule Display

lookupPrice(selection)

displayPrice(price)

price

Dataflow
…continued on next slide...

47© 2007 Bernd Bruegge Introduction to Software Engineering SS 2007

Sequence Diagrams: Iteration & Condition

• Iteration is denoted by a * preceding the message name
• Condition is denoted by boolean expression in [] before

the message name

Passenger ChangeProcessor

insertChange(coin)

CoinIdentifier Display CoinDrop

displayPrice(owedAmount)

lookupCoin(coin)

price

[owedAmount<0] returnChange(-owedAmount)

Iteration

Condition

…continued on next slide...

…continued from previous slide...

*

48© 2007 Bernd Bruegge Introduction to Software Engineering SS 2007

Creation and destruction

• Creation is denoted by a message arrow pointing to the object
• Destruction is denoted by an X mark at the end of the

destruction activation
• In garbage collection environments, destruction can be used to

denote the end of the useful life of an object.

Passenger ChangeProcessor

…continued from previous slide...

Ticket

createTicket(selection)

free()

Creation of Ticket

Destruction of Ticket

print()

49© 2007 Bernd Bruegge Introduction to Software Engineering SS 2007

Sequence Diagram Properties

• UML sequence diagram represent behavior in
terms of interactions

• Useful to identify or find missing objects
• Time consuming to build, but worth the

investment
• Complement the class diagrams (which

represent structure).

50© 2007 Bernd Bruegge Introduction to Software Engineering SS 2007

Outline of this Class

• A more detailed view on

Use case diagrams
Class diagrams
Sequence diagrams
Activity diagrams

51© 2007 Bernd Bruegge Introduction to Software Engineering SS 2007

Activity Diagrams

• An activity diagram is a special case of a state
chart diagram

• The states are activities (“functions”)
• An activity diagram is useful to depict the

workflow in a system

Handle
Incident

Document
Incident

Archive
Incident

52© 2007 Bernd Bruegge Introduction to Software Engineering SS 2007

Activity Diagrams allow to model Decisions

Open
Incident

Notify
Police Chief

Notify
Fire Chief

Allocate
Resources

[fire & highPriority]

[not fire & highPriority]

[lowPriority]

Decision

53© 2007 Bernd Bruegge Introduction to Software Engineering SS 2007

Activity Diagrams can model Concurrency

• Synchronization of multiple activities
• Splitting the flow of control into multiple threads

Open
Incident

Allocate
Resources

Coordinate
Resources

Document
Incident

Archive
Incident

SynchronizationSplitting

54© 2007 Bernd Bruegge Introduction to Software Engineering SS 2007

Activity Diagrams: Grouping of Activities

• Activities may be grouped into swimlanes to
denote the object or subsystem that implements
the activities.

Open
Incident

Allocate
Resources

Coordinate
Resources

Document
Incident

Archive
Incident

Dispatcher

FieldOfficer

55© 2007 Bernd Bruegge Introduction to Software Engineering SS 2007

Activity Diagram vs. Statechart Diagram

Handle
Incident

Document
Incident

Archive
Incident

Active Inactive Closed Archived
Incident-
Handled

Incident-
Documented

Incident-
Archived

Statechart Diagram for Incident
Focus on the set of attributes of a single abstraction (object, system)

Activity Diagram for Incident
(Focus on dataflow in a system)

Triggerless
transitionCompletion of activity

causes state transition

Event causes
state transition

56© 2007 Bernd Bruegge Introduction to Software Engineering SS 2007

UML Summary

• UML provides a wide variety of notations for
representing many aspects of software
development

• Powerful, but complex

• UML is a programming language
• Can be misused to generate unreadable models
• Can be misunderstood when using too many exotic

features

• We concentrated on a few notations:
• Functional model: Use case diagram
• Object model: class diagram
• Dynamic model: sequence diagrams, statechart and

activity diagrams

