
1
© 2008 Bernd Bruegge
 Software Engineering Winter 2008-9

Software Engineering I:
Software Technology

WS 2008

Software Lifecycle Models

Bernd Bruegge
Chair for Applied Software Engineering

Technische Universitaet Muenchen

2
© 2008 Bernd Bruegge
 Software Engineering Winter 2008-9

Outline of Lecture: Today and Friday

•  Announcements
•  Modeling the software life cycle
•  Sequential models

•  Pure waterfall model, V-model

•  Iterative models
•  Boehm’s spiral model, Unified Process

•  Entity-oriented models
•  Issue-based models and agile

models.

Today

Friday

3
© 2008 Bernd Bruegge
 Software Engineering Winter 2008-9

Announcements

•  Lecture Evaluation
•  Lecture Schedule for the remaining semester.

4
© 2008 Bernd Bruegge
 Software Engineering Winter 2008-9

Lecture Evaluation

•  Positive:
•  Real-World Speakers, Praxisanbindung, hoher

Praxisbezug, Flughafen-Präsentationen
•  Art der Vorlesungspräsentation angenehm

•  Negative:
•  Mid-term klausur: first open book,then closed book,

then not relevant,
•  Schwachsinnige Klausur-Regelung
•  Musterlösungen nicht rechtzeitig
•  I don’t think interactive exercises don’t work well with

this kind of material and number of students
•  Kein Konzept hinter den Übungen
•  Schwer den Gesamtüberblick zu behalten

5
© 2008 Bernd Bruegge
 Software Engineering Winter 2008-9

Lecture Evaluation (2)

•  Your Suggestions:
•  Less Slides
•  One continuous project in the exercises
•  Title of the slides should be related to the table of

contents with the book

•  Our Suggestions:
•  Become a tutor for my lecture in the summer 2009
•  Great chance to improve software exercises
•  Great way to learn project management hands-on

Chapter 1-3

Chapter 4

Chapter 5

Chapter 6-7

Chapter 8-9

Chapter 11

Chapter 15

7
© 2008 Bernd Bruegge
 Software Engineering Winter 2008-9

OOSE Development Activities: Relationship
Book Chapters and Lecture Slides

Requirements
Elicitation CH. 4

Analysis CH. 5

System design
(CH. 6+7)

problem
statement

functional
model

nonfunctional
requirements

object
model

dynamic
model

class
diagram

use case
diagram

statechart
diagram

sequence
diagram

Intro and Notation:

Ch 1-3

8
© 2008 Bernd Bruegge
 Software Engineering Winter 2008-9

OOSE- Development activities (cont’d)
System design
(CH. 6+7)

Object design
(CH 8+9)

Implementation
(CH 10)

object
design
model

design
goals

subsystem
decomposition

source
code

Testing
 (CH 11)

deliverable
system

class
diagram

9
© 2008 Bernd Bruegge
 Software Engineering Winter 2008-9

Remaining Class Schedule

•  Jan 13 and Jan 16: Software Lifecycle (Ch 15)
•  Jan 20, 16:15-17:45

•  Build and Release Management, Configuration
Management (Ch 12)

•  Jan 23: No class
•  Jan 27, 16:15-17:45 Invited Lecture, Rolf

Schumann, Better Place Inc., “Software Requirements
for Green Technologies”

•  Jan 30, 9:15-10:00: Methodologies II (Ch 16)
•  Feb 3, 16:15-17:45: Invited Lecture, Klaus

Eberhardt, iteratec GmbH, „Why Projects Fail“
•  Feb 5, 18:00-19:30: Final Exam,

 Location: Maschinenwesen 0001

10
© 2008 Bernd Bruegge
 Software Engineering Winter 2008-9

What about Chapters 12 and Chapter 15?

•  Rationale Management and Project Management
will be covered in another lecture in the summer

•  Software Engineering II: Project Organization
and Management (“POM”, Module IN2083)

•  Elective (“Wahlpflichtfach”) for Diplom students, 3rd
level module for master students

•  2V + 2 Ü
•  Accompanied with a continous project throughout the

lectures
•  http://drehscheibe.in.tum.de/myintum/

kurs_verwaltung/cm.html?id=IN2083

•  See also
•  http://www.in.tum.de/fuer-studierende-der-tum/

module-und-veranstaltungen/vorschau-
veranstaltungen.html

11
© 2008 Bernd Bruegge
 Software Engineering Winter 2008-9

Outline of Lecture: Today and Friday

 Announcements
•  Modeling the software life cycle
•  Sequential models

•  Pure waterfall model, V-model

•  Iterative models
•  Boehm’s spiral model, Unified Process

•  Entity-oriented models
•  Issue-based models and agile models.

Today

Friday

12
© 2008 Bernd Bruegge
 Software Engineering Winter 2008-9

Definitions

•  Software life cycle
•  Set of activities and their relationships to each other to

support the development of a software system

•  Software development methodology
•  A collection of techniques for building models applied

across a software life cycle
•  It also specifies what to do, when something is missing

or things go wrong.

13
© 2008 Bernd Bruegge
 Software Engineering Winter 2008-9

Typical Software Life Cycle Questions

•  Which activities should we select for the software project?
•  What are the dependencies between activities?
•  How should we schedule the activities?
•  To find these activities and dependencies we can use the

same modeling techniques we use for software development:
•  Functional model of a software lifecycle

•  Scenarios, Use case model
•  Structural model of a software lifecycle

•  Object identification, Class diagrams
•  Dynamic model of a software lifecycle

•  Sequence diagrams, statechart and activity diagrams

These questions are also crucial for the design of a lecture

Slide 7 + 8 present a dynamic model of SE I

14
© 2008 Bernd Bruegge
 Software Engineering Winter 2008-9

Developer Client Project manager

System development Problem definition

<<include>>
<<include>>

<<include>>
Software development

System operation

End user Administrator

Functional Model of a simple Life Cycle
Model

15
© 2008 Bernd Bruegge
 Software Engineering Winter 2008-9

System
operation
activity

System
development
activity

Problem
definition
activity

Interpretation:
Software development goes through a linear progression of states
called Problem definition activity,

System development activity and System operation activity.

Activity Diagram for the same Life Cycle
Model

16
© 2008 Bernd Bruegge
 Software Engineering Winter 2008-9

Another Life Cycle Model

Interpretation:
System development and Market creation can be done in parallel.
They must be finished before the System upgrade activity
can start.

System
upgrade
activity

Market
creation
activity

System
development
activity

17
© 2008 Bernd Bruegge
 Software Engineering Winter 2008-9

Two Major Views of the Software Life Cycle

•  Activity-oriented view of a software life cycle
•  Software development consists of a set of development

activities
•  All the examples so far

•  Entity-oriented view of a software life cycle
•  Software development consists of the creation of a set of

deliverables.

18
© 2008 Bernd Bruegge
 Software Engineering Winter 2008-9

Entity-centered view of Software Development

Lessons learned
document

System specification
document Executable system

Market survey
document

Software Development

Interpretation:
Software development consists of the creation of a
set of deliverables: Market survey document,

System specification document, Executable system,

Lessons learned document.

19
© 2008 Bernd Bruegge
 Software Engineering Winter 2008-9

Specification

Executable system

Lessons learned

Market survey

Problem definition

System development

System operation

Activity Work product

consumes

produces

consumes

produces

consumes

produces

activity

activity

activity

document

document

document

Combining Activities and Entities in One
View

IEEE Std 1074: Standard for Software Life
Cycle Activities

IEEE Std 1074

Project
Management

Pre-
Development

Develop-
ment

Post-
Development

Cross-
Development

(Integral Processes)

> Project Initiation
>Project Monitoring
 &Control
> Software Quality
 Management

> Concept
 Exploration
> System
 Allocation

> Requirements
> Design
> Implemen-
 tation

> Installation
> Operation &
 Support
> Maintenance
> Retirement

> V & V
> Configuration
 Management
> Documen-
 tation
> Training

Process Group

Process

IEEE
IEEE: Institute for Electrical and Electronics Engineers

(“I-triple-e”)
•  Founded in 1963, initial focus on telephone,radio,

electronics, http://www.ieee.org/portal/site
•  Largest subgroup with 100,000 members: IEEE

Computer Society, founded in 1971
•  “Computer Magazine”, Transactions, eg. “Transactions on

Software Engineering”

•  Largest standards-making organization in the world
•  Well-known examples: IEEE 802.3 and IEEE 802.11

•  IEEE 802.3 Ethernet
•  IEEE 802.11 Wireless LAN, also called WiFi

•  802.11b, 802.11g, 802.11n
•  2.4-5 GHz, 11 Mbit/s, 54 Mbit/s, 248 Mbit/s.

22
© 2008 Bernd Bruegge
 Software Engineering Winter 2008-9

ACM

•  Association for Computing Machinery
•  Founded in 1947

•  80,000 members

•  Web Portal: http://www.acm.org/

•  Organized in local chapters and special interest groups

•  There are even student chapters

•  You can start one here at TUM!

•  http://www.acm.org/chapters/stu/

•  Main publication:

•  Communications of the ACM, short CACM

•  Digital Library

•  http://portal.acm.org/dl.cfm

23
© 2008 Bernd Bruegge
 Software Engineering Winter 2008-9

GI

•  Gesellschaft für Informatik
•  Supports computer science in research, education and

applications

•  Founded in 1969, 24,500 members (2,500 students)
•  Website: http://www.gi-ev.de/
•  Digital Library:

•  http://www.gi-ev.de/service/digitale-bibliotheken/io-port/
•  Also access to IEEE digital library
•  http://www.gi-ev.de/service/digitale-bibliotheken/ieee/

•  Interesting conference: Software Engineering 2009
•  In Kaiserslautern http://www.se2009.de/
•  The last one was in Munich: http://se2008.in.tum.de
•  Videos of Key Lectures: http://se2008.in.tum.de/videos-

se-2008.html

IEEE Std 1074: Standard for Software Life
Cycle Activities

IEEE Std 1074

Project
Management

Pre-
Development

Develop-
ment

Post-
Development

Cross-
Development

(Integral Processes)

> Project Initiation
>Project Monitoring
 &Control
> Software Quality
 Management

> Concept
 Exploration
> System
 Allocation

> Requirements
> Design
> Implemen-
 tation

> Installation
> Operation &
 Support
> Maintenance
> Retirement

> V & V
> Configuration
 Management
> Documen-
 tation
> Training

Process Group

Process

25
© 2008 Bernd Bruegge
 Software Engineering Winter 2008-9

Object Model of the IEEE 1074 Standard

Process Group

Activity

Process

*

Software Life Cycle

*

*

Work Product

Resource

Task

Money

Time

Participant

consumed by

produces

Work Unit
*

*

*

26
© 2008 Bernd Bruegge
 Software Engineering Winter 2008-9

Life Cycle Modeling

•  Many models have been proposed to deal with the
problems of defining activities and associating them
with each other

•  The waterfall model, 1970
•  V-Model, 1992, 1997
•  Spiral model, 1988
•  Rational process, 1996
•  Unified process, 1999
•  Agile models, 1999
•  V-Model XT, 2003
•  Open Unified Process (Part of the Eclipse Process

Framework, open source project)
•  SPEM Software Process Engineering Meta-Model 2.0, 2008

27
© 2008 Bernd Bruegge
 Software Engineering Winter 2008-9

Requirements
Process

System
Allocation
Process

Concept
Exploration
Process

Design
Process

Implementation
Process

Installation
Process

Operation &
Support Process

Verification
& Validation

Process

The Waterfall Model of
the Software Life
Cycle

adapted from [Royce 1970]

28
© 2008 Bernd Bruegge
 Software Engineering Winter 2008-9

Example of a Waterfall Modell
DOD Standard 2167A

•  Example of a waterfall model with the following
software development activities

•  System Requirements Analysis/Design
•  Software Requirements Analysis
•  Preliminary Design and Detailed Design
•  Coding and CSU testing
•  CSC Integration and Testing
•  CSCI Testing
•  System integration and Testing

•  Required by the U.S. Department of Defense
(DOD) for all software contractors in the
1980-90’s.

29
© 2008 Bernd Bruegge
 Software Engineering Winter 2008-9

Activity Diagram of
MIL DOD-STD-2167A

Preliminary
Design Review

Critical Design
Review (CDR)

System
Requirements

Review

System
Design
Review

Software
Specification

Review

System
Requirements
Analysis

Software
Requirements
Analysis

System
Design

…

Preliminary
Design

Detailed
Design

Coding &
CSU Testing

CSC
Integration
& Testing

30
© 2008 Bernd Bruegge
 Software Engineering Winter 2008-9

From the Waterfall Model to the V Model

System Design

Requirements
Analysis

Requirements
Engineering

Object
Design

Integration
Testing

System

Testing

Unit

 Testing

Implemen-

tation

System

Testing

Unit

 Testing

Integration

 Testing

Acceptance

31
© 2008 Bernd Bruegge
 Software Engineering Winter 2008-9

Activity Diagram of the V Model
System

Requirements
Analysis

Implementation

Preliminary
Design

Detailed
Design

Software
Requirements
Elicitation

Operation

Client
Acceptance

Requirements
Analysis

Unit
Test

System
Integration

& Test

Component
Integration

& Test

Problem with the V-Model:

Developers Perception =

 User Perception

precedes

Is validated by

32
© 2008 Bernd Bruegge
 Software Engineering Winter 2008-9

Escher was the first:-)

 The Alternative: Allow Iteration

http://www.mcescher.com/

33
© 2008 Bernd Bruegge
 Software Engineering Winter 2008-9

Construction of Escher’s Waterfall Model

http://www.cs.technion.ac.il/~gershon/EscherForReal/

•  The spiral model focuses on addressing risks
•  This is done incrementally, in order of priority
•  Main question: What is the highest risk?

•  Let’s attack it first

•  The spiral model contains of a set of activities
•  This set of activities is applied to a couple of so-called

rounds.

Spiral Model

35
© 2008 Bernd Bruegge
 Software Engineering Winter 2008-9

Set of Activities in the Spiral Model

1.  Determine objectives and constraints
2.  Evaluate alternatives
3.  Identify the risks
4.  Assign priorities to the risks
5.  Develop a prototype for each risk, starting with

the highest priority
6.  Follow a waterfall model for each prototype

development
7.  If a risk has been resolved, evaluate the results

and plan the next round
8.  If a risk cannot be resolved, terminate the

project.

36
© 2008 Bernd Bruegge
 Software Engineering Winter 2008-9

Rounds in Boehm’s Spiral Model

•  Concept of Operations
•  Software

Requirements
•  Software Product

Design
•  Detailed Design
•  Code
•  Unit Test
•  Integration and Test
•  Acceptance Test
•  Implementation

•  For each round, do the
following:

•  Define objectives,
alternatives, constraints

•  Evaluate alternatives,
identify, prioritize and
resolve risks

•  Develop a prototype
•  Plan the next round
•  Called the 4 Quadrants.

Disccourse on Prototyping

37
© 2008 Bernd Bruegge
 Software Engineering Winter 2008-9

The 4 Quadrants in Boehm’s Spiral Model

IV. Quadrant

I. Quadrant

II. Quadrant

III. Quadrant

38
© 2008 Bernd Bruegge
 Software Engineering Winter 2008-9

Round 1, Concept of Operations:
Determine objectives,alternatives & constraints

Project
Start

IV. Quadrant

39
© 2008 Bernd Bruegge
 Software Engineering Winter 2008-9

Round 1, Concept of Operations:
Evaluate alternatives, identify & resolve risks

Risk Analysis I. Quadrant

40
© 2008 Bernd Bruegge
 Software Engineering Winter 2008-9

Round 1, Concept of Operations:
Develop a prototype for the highest risk

Develop
Prototype 1 I. Quadrant

41
© 2008 Bernd Bruegge
 Software Engineering Winter 2008-9

Round 1, Concept of Operations:
Develop and validate

Round 1: Concept of Operation
Activity: Develop and Validate

II. Quadrant

42
© 2008 Bernd Bruegge
 Software Engineering Winter 2008-9

Round 1, Concept of Operations:
Prepare for Next Round

Requirements and
Life cycle Planning

III. Quadrant

43
© 2008 Bernd Bruegge
 Software Engineering Winter 2008-9

Round 2, Software Requirements

Start
of Round 2

Risk Analysis
Develop

Prototype 2

Round 2: Software Requirements
Activity: Develop and Validate

Development Plan

44
© 2008 Bernd Bruegge
 Software Engineering Winter 2008-9

Comparison of Projects on the basis of the
Spiral Model
Determine objectives,
alternatives, & constraints

Evaluate alternatives,
identify & resolve risks

Develop & verify
next level productPlan next phase

Requirements

Development

Integration

plan

plan

plan

Requirements

Design

validation

validation

Software System
Product

Risk
analysis

Risk
analysis

Prototype1
Prototype2

Prototype3

Risk
analysis

Concept of
operation

Requirements
Design

Code

Unit Test

Integration & Test
Acceptance

Detailed
Design

P1

P2

Test

Project P1

Project P2

45
© 2008 Bernd Bruegge
 Software Engineering Winter 2008-9

Are these models good enough for today’s
software development challenges?

46
© 2008 Bernd Bruegge
 Software Engineering Winter 2008-9

Properties of Linear Lifecycle Models

•  Managers love linear models
•  Nice milestones
•  No need to look back (linear system)
•  Always one activity at a time
•  Problem with progress checks:

 “The system is 90% coded, 90%, 90%...”,
 “We are done 20% of our tests”

•  The Spiral model has the property of
many concatenated waterfalls

•  Two “surviving models” in the evolution
of activity-oriented software lifecycle
models:

•  V-Model XT: successor of the V model
•  Unified Process: successor ofthe spiral model.

47
© 2008 Bernd Bruegge
 Software Engineering Winter 2008-9

Outline of the Lecture

 Modeling the software life cycle
 Sequential models

 Pure waterfall model
 V-model

 Iterative models
 Boehm’s spiral model
•  Unified Process

•  Entity-oriented models
•  Issue-based model

Jan 13

Jan 16

48
© 2008 Bernd Bruegge
 Software Engineering Winter 2008-9

Exercise Session next Thursday

•  Install Cruise Control on your Laptop before
coming.

•  You can work in teams of 3.
•  One project with several new requirements,

each team selects a different requirement and
implements it.

•  Duration: 90 minutes
•  First price for best delivery: 1 bottle of

champaign.
•  Product: Race car crash game.

49
© 2008 Bernd Bruegge
 Software Engineering Winter 2008-9

Unified Process

•  The Unified Process is another iterative process
model

•  4 states of a software system
•  Inception, Elaboration, Construction, Transition

•  2 Artifacts Sets
•  Management Set, Engineering Set

•  7 Workflows
•  Management, Environment, Requirements, Design,

Implementation, Assessment, Deployment

•  Project participants are called stakeholders.

50
© 2008 Bernd Bruegge
 Software Engineering Winter 2008-9

Key Idea behind the Unified Process

•  Each artifact set is the predominant focus in one
stage of the unified process

Inception Elaboration Construction Transition
Management

Set

Requirements
 Set

Design Set

Implementation
Set

Deployment
Set

51
© 2008 Bernd Bruegge
 Software Engineering Winter 2008-9

Focus Areas in the Unified Process

•  The Unified Process supports the following
•  Evolution of project plans, requirements and software

architecture with well-defined synchronization points
•  Risk management: Contingency plans for risks
•  Evolution of system capabilities through demonstrations

of increasing functionality

•  Big emphasis on the difference between
engineering and production

•  This difference is modeled by introducing two
major stages:

•  Engineering stage
•  Production stage.

Difference: Engineering vs. Production

•  Engineering Stage:
•  Focuses on analysis and design activities, driven by risks,

unpredictable issues, smaller teams

•  Production Stage:
•  Focuses on construction, test and deployment, driven by

more predictable issues, artifacts and quality
assessment, larger teams

Focus Factor
Risk

Activities

Artifacts

Quality Assessment

Engineering Stage
Schedule, technical feasibility

Planning, Analysis, Design

Requirement Analysis and
System Design Documents
Demonstration, Inspection,
Reviews

Production Stage
Cost

Implementation, Integration

Baselines, Releases

Testing

Phases in the Unified Process

The 2 major stages are decomposed into 4 phases
 Engineering stage

1.  Inception phase
2.  Elaboration phase

Elaboration Inception

Construction Transition

Transition from
 engineering to

production stage

 Production stage
3. Construction phase
4. Transition phase

The phases describe states of the software system to be developed.

54
© 2008 Bernd Bruegge
 Software Engineering Winter 2008-9

•  Stages and phases are nothing else but
arbitrary names of the states - actually
superstates and states - of a project.

• 

55
© 2008 Bernd Bruegge
 Software Engineering Winter 2008-9

Inception Phase: Objectives

•  Establish the project’s scope
•  Define acceptance criteria (for the client

acceptance test)
•  Identify the critical use cases and scenarios
•  Demonstrate at least one candidate software

architecture
•  Estimate the cost and schedule for the project
•  Define and estimate potential risks.

56
© 2008 Bernd Bruegge
 Software Engineering Winter 2008-9

Elaboration Phase: Objectives

At the end of this phase, the “engineering” of the
system is complete

A decision must be made:
•  Commit to production phase?
•  Move to an operation with higher cost risk and inertia

(more “bureaucracy”)

Main questions:
•  Are the system models and project plans stable

enough?
•  Have the risks been dealt with?
•  Can we predict cost and schedule for the completion of

the development for an acceptable range?

57
© 2008 Bernd Bruegge
 Software Engineering Winter 2008-9

Construction Phase: Objectives

•  Minimize development costs by optimizing
resources

•  Avoid unnecessary restarts (modeling, coding)

•  Achieve adequate quality as fast as possible
•  Achieve useful version

•  Alpha, beta, and other test releases.

58
© 2008 Bernd Bruegge
 Software Engineering Winter 2008-9

Transition Phase

•  The transition phase is entered
•  when a baseline is mature enough that it can be

deployed to the user community

•  For some projects the transition phase is
•  the starting point for the next version

•  For other projects the transition phase is
•  a complete delivery to a third party responsible for

operation, maintenance and enhancement of the
software system.

59
© 2008 Bernd Bruegge
 Software Engineering Winter 2008-9

Transition Phase: Objectives

•  Achieve independence of developers
•  Produce a deployment version is complete and

consistent
•  Build a release as rapidly and cost-effectively as

possible.

60
© 2008 Bernd Bruegge
 Software Engineering Winter 2008-9

Iteration in the Unified Process

•  Each of the four phases introduced so far
(inception, elaboration, construction, transition)
consists of one or more iterations

•  An iteration represents a set of activities for
which

•  milestones are defined (“a well-defined intermediate
event”)

•  the scope and results are captured with work-products
called artifacts.

61
© 2008 Bernd Bruegge
 Software Engineering Winter 2008-9

Artifact Sets

•  Artifact set
•  A set of work products that are persistent and in a

uniform representation format (natural language, Java,
UML,…)

•  Every element in the set is developed and reviewed as a
single entity

•  The Unified Process distinguishes five artifact
sets:

•  Management set
•  Requirements set
•  Design set
•  Implementation set
•  Deployment set

Also called Engineering set.

Artifact Sets in the Unified Process

Requirements
Set

1. Vision
document
(“problem
statement”)

2. Requirements
model(s)

Design Set

1. Design
 model(s)
2. Test model

3. Software
 architecture

Implementation
Set

1. Source code
 baselines
2. Compile-time
 files
3. Component
 executables

Deployment
Set

1. Integrated pro-
 duct executable
2. Run-time files

3. User
 documentation

Management Set

Planning Artifacts
1. Work breakdown structure
2. Business Case
3. Release specifications
4. Software Project
Management Plan

Operational Artifacts
1. Release descriptions
2. Status assessments
3. Software change order
database
4. Deployment documents
5. Environment

63
© 2008 Bernd Bruegge
 Software Engineering Winter 2008-9

Focus on Artifact Sets during Development

•  Each artifact set is the predominant focus in one
stage of the unified process

Inception Elaboration Construction Transition
Management

Set

Requirements
 Set

Design Set

Implementation
Set

Deployment
Set

64
© 2008 Bernd Bruegge
 Software Engineering Winter 2008-9

Management of Artifact Sets

•  Some artifacts are changed only after a phase
•  Other artifacts are updated after each minor

milestone, i.e. after an iteration
•  The project manager is responsible

•  to manage and visualize the sequence of artifacts
across the software lifecycle activities

•  This visualization is often called artifact roadmap.

65
© 2008 Bernd Bruegge
 Software Engineering Winter 2008-9

Artifact Roadmap: Focus on Models

Inception
 Elaboration
 Construction
 Transition

Management Set

Requirements Set

Design Set

Deployment Set

1. Vision

2. WBS

3. Schedule

4. Conf. Management

5. Project Agreement

6. Test cases

1. Analysis Model

1. System Design

2. Interface Specification

Implementation Set

1. Source code

2. Test cases

1. Alpha-Test

2. Beta-Test

Informal

Baseline

66
© 2008 Bernd Bruegge
 Software Engineering Winter 2008-9

Artifact Roadmap: Focus on Documents

Inception
 Elaboration
 Construction
 Transition

Management Set

Requirements Set

Design Set

Deployment Set

1. Problem Statement

2. WBS

3. SPMP

4. SCMP

5. Project Agreement

6. Test plan

1. RAD

1. SDD

2. ODD

Implementation Set

1. Source code

2. Test cases

1. User Manual

2. Administrator Manual

Informal

Baseline

67
© 2008 Bernd Bruegge
 Software Engineering Winter 2008-9

Models vs. Documents

•  Documentation-driven approach
•  The production of the documents drives the milestones

and deadlines

•  Model-driven approach
•  The production of the models drive the milestones

deadlines

•  Focus of a modern software development project
is model-driven

•  Creation of models and construction of the software
system

•  The purpose of documentation is to support this goal.

68
© 2008 Bernd Bruegge
 Software Engineering Winter 2008-9

Reasons for Documentation-Driven Approach

•  No rigorous engineering methods and languages
available for analysis and design models

•  Language for implementation and deployment is
too cryptic

•  Software project progress needs to be assessed
•  Documents represent a mechanism for demonstrating

progress

•  People want to review information
•  but do not understand the language of the artifact

•  People wanted to review information,
•  but do not have access to the tools to view the

information.

69
© 2008 Bernd Bruegge
 Software Engineering Winter 2008-9

Model-Driven Approach

•  Provide document templates at project start
•  Project specific customization

•  Instantiate documents automatically from these
templates

•  Enriches them with modeling information generated
during the project

•  Automatically generates documents from the
models. Examples:

•  Schedule generator
•  Automatic requirements document generator
•  Automatic interface specification generator
•  Automatic analysis and design documents generator
•  Automatic test case generator
•  Regression tester.

70
© 2008 Bernd Bruegge
 Software Engineering Winter 2008-9

Workflows in the Unified Process (1)

•  Management workflow
•  Planning of the project (Creation of problem statement,

SPMP, SCMP, test plan)

•  Environment workflow
•  Automation of process and maintenance environment.

Setup of infrastructure (communication infrastructure,
configuration management, build environment).

•  Requirements workflow
•  Analysis of application domain and creation of

requirements artifacts (analysis model).

•  Design workflow
•  Creation of solution and design artifacts (system

design model, object design model).

71
© 2008 Bernd Bruegge
 Software Engineering Winter 2008-9

Workflows in the Unified Process (2)

•  Implementation workflow
•  Implementation of solution, source code testing,

maintenance of implementation and deployment
artifacts (source code).

•  Assessment workflow
•  Assess process and products (reviews, walkthroughs,

inspections, unit testing, integration testing, system
testing, regression testing)

•  Deployment workflow
•  Transition the software system to the end user.

72
© 2008 Bernd Bruegge
 Software Engineering Winter 2008-9

Workflows vs Phases

Inception
 Elaboration
 Construction
 Transition

Design Workflow

Implementation

Workflow

Assessment

Workflow

Deployment

Workflow

Management

Workflow

Requirements

 Workflow

Environment

Workflow

73
© 2008 Bernd Bruegge
 Software Engineering Winter 2008-9

Workflows vs Phases

•  A Phase describes the status of a software
system

•  Inception, elaboration, construction, transition

•  Workflows can consist of one or more iterations
per phase

•  “We are in the 3rd iteration in the design workflow”,
“We are in the 3rd iteration during design”

•  Workflows create artifacts (models, documents)
for the artifact sets

•  Management set, engineering set.

74
© 2008 Bernd Bruegge
 Software Engineering Winter 2008-9

Managing Projects in the Unified Process

•  How to manage the construction of software
systems with the Unified Process:

•  Treat the development of a software system with the
Unified Process as a set of several iterations

•  Some of these can be scheduled in parallel, others
have to occur in sequence

•  Define a single project for each iteration
•  Establish work break down structures for each of the 7

workflows.

75
© 2008 Bernd Bruegge
 Software Engineering Winter 2008-9

The term “Process“ has many meanings in
the Unified Process

•  Meta Process (Also called “Business process”)
•  The policies, procedures and practices in an organization

pursuing a software-intensive line of business.
•  Focus: Organizational improvement, long-term strategies,

and return on investment (ROI)

•  Macro Process (“Lifecycle Model”)
•  The set of processes in a software lifecycle and

dependencies among them
•  Focus: Producing a software system within cost, schedule

and quality constraints

•  Micro Process (Grady Booch)
•  Techniques for achieving an artifact of the software process.
•  Focus: Intermediate baselines with adequate quality and

functionality, as economically and rapidly as practical.

76
© 2008 Bernd Bruegge
 Software Engineering Winter 2008-9

Phase vs. Iteration

•  A phase creates formal, stake-holder approved
versions of artifacts (finishes with a “major
milestone”)

•  A phase to phase transition is triggered by a business
decision

•  An iteration creates informal, internally
controlled versions of artifacts (“minor
milestones”)

•  Iteration to iteration transition is triggered by a specific
software development activity.

77
© 2008 Bernd Bruegge
 Software Engineering Winter 2008-9

Limitations of Waterfall and Iterative Models

•  Neither of these models deal well with frequent
change

•  The Waterfall model assumes that once you are done
with a phase, all issues covered in that phase are
closed and cannot be reopened

•  The Spiral model can deal with change between
rounds, but do not allow change within a round

•  The Unified Process model can deal with change in an
iteration, but it has problems to deal with change
within a iteration

•  What do we do if change is happening more
frequently?

•  “The only constant is the change” (Hammer & Champy,
Reengineering).

78
© 2008 Bernd Bruegge
 Software Engineering Winter 2008-9

Frequency of Change and Choice of
Software Lifecycle Model

PT = Project Time, MTBC = Mean Time Between Change

•  Change rarely occurs (MTBC » PT)

•  Waterfall Model

•  Open issues are closed before moving to next phase

•  Change occurs sometimes (MTBC ≈ PT)

•  Boehm’s Spiral Model, Unified Process

•  Change occurring during phase may lead to iteration
of a previous phase or cancellation of the project

•  Change is frequent (MTBC « PT)

•  Issue-based Development (Concurrent Development)

•  Phases are never finished, they all run in parallel.

79
© 2008 Bernd Bruegge
 Software Engineering Winter 2008-9

An Alternative: Issue-Based Development

•  A system is described as a collection of issues
•  Issues are either closed or open
•  Closed issues have a resolution
•  Closed issues can be reopened (Iteration!)

•  The set of closed issues is the basis of the system
model

I1:Open

I2:Closed I3:Closed

A.I1:Open

A.I2:Open

SD.I1:Closed

SD.I2:Closed

SD.I3:Closed

Planning Requirements Analysis System Design

80
© 2008 Bernd Bruegge
 Software Engineering Winter 2008-9

Waterfall Model: Analysis Phase

I1:Open

I2:Open I3:Open

A.I1:Open

A.I2:Open

SD.I1:Open

SD.I2:Open

SD.I3:Open Analysis Analysis

81
© 2008 Bernd Bruegge
 Software Engineering Winter 2008-9

Waterfall Model: Design Phase

I1:Closed

I2:Closed I3:Open

A.I1:Open

A.I2:Open

SD.I1:Open

SD.I2:Open

SD.I3:Open Analysis

Design

Analysis

82
© 2008 Bernd Bruegge
 Software Engineering Winter 2008-9

Waterfall Model: Implementation Phase

I1:Closed

I2:Closed I3:Closed

A.I1:Closed

A.I2:Closed

SD.I1:Open

SD.I2:Open

SD.I3:Open

Implementation

Design

Analysis

83
© 2008 Bernd Bruegge
 Software Engineering Winter 2008-9

Waterfall Model: Project is Done

I1:Closed

I2:Closed I3:Closed

A.I1:Closed

A.I2:Closed

SD.I1:Open

SD.I2:Open

SD.I3:Open

Implementation

Design

Analysis

84
© 2008 Bernd Bruegge
 Software Engineering Winter 2008-9

Issue-Based Model: Analysis Phase

I1:Open

I2:Open I3:Open

D.I1:Open

Imp.I1:Open

Analysis:80%

Design: 10%

Implemen-
tation: 10%

85
© 2008 Bernd Bruegge
 Software Engineering Winter 2008-9

Issue-Based Model: Design Phase

I1:Closed

I2:Closed I3:Open

SD.I1:Open

SD.I2:Open

Imp.I1:Open

Imp.I2:Open

Imp.I3:Open Analysis:40%

Design: 60%

Implemen-
tation: 0%

86
© 2008 Bernd Bruegge
 Software Engineering Winter 2008-9

Issue-Based Model: Implementation Phase

I1:Open

I2:Closed I3:Closed

A.I1:Open

A.I2:Closed

SD.I1:Open

SD.I2:Closed

SD.I3:Open Analysis:10%

Design: 10%

Implemen-
tation: 60%

87
© 2008 Bernd Bruegge
 Software Engineering Winter 2008-9

Issue-Based Model: Prototype is Done

I1:Closed

I2:Closed I3: Pending

A.I1:Closed

A.I2:Closed

SD.I1:Open

SD.I2: Unresolved

SD.I3:Closed

88
© 2008 Bernd Bruegge
 Software Engineering Winter 2008-9

Summary Unified Process

•  Unified Process: Iterative software lifecycle
model

•  4 phases: Inception, Elaboration, Construction,
Transition

•  7 workflows: Management, environment,
requirements, design, implementation,
assessment, deployment.

•  5 artifact sets: Management set, requirements
set, design set, implementation set, deployment
set

•  Iteration: Repetition within a workflow.
•  An iteration in the unified process is treated as a

software project.

89
© 2008 Bernd Bruegge
 Software Engineering Winter 2008-9

•  Software life cycle models
•  Sequential models

•  Pure waterfall model and V-model
•  Iterative model

•  Boehm’s spiral model, Unified process
•  Entity-oriented models

•  Issue-based model

•  Prototype
•  A specific type of system demonstrating one aspect of

the system model without being fully operational
•  Illustrative, functional and exploratory prototypes

•  Prototyping
•  Revolutionary and evolutionary prototyping
•  Time-boxed prototyping is a better term than rapid

prototyping.

Summary

90
© 2008 Bernd Bruegge
 Software Engineering Winter 2008-9

Additional References
•  Walker Royce

•  Software Project Management, Addison-Wesley, 1998.

•  Ivar Jacobsen, Grady Booch & James Rumbaugh
•  The Unified Software Development Process, Addison

Wesley, 1999.

•  Jim Arlow and Ila Neustadt
•  UML and the Unified Process: Practical Object-Oriented

Analysis and Design, Addison Wesley, 2002.

•  Andreas Rausch et. al
•  Das V-Modell XT: Grundlagen, Methodik und

Anwendungen Springer, 2006.

•  V-Model XT Online Dokumentation
•  ftp://ftp.tu-clausthal.de/pub/institute/informatik/v-

modell-xt/Releases/1.2.1/Documentation/V-Modell-XT-
Complete.pdf.

91
© 2008 Bernd Bruegge
 Software Engineering Winter 2008-9

Additional Readings (2)

•  Winston Royce
•  Managing the Development of Large Software

Systems, Proceedings of the IEEE WESCON, August
1970, pp. 1-9

•  Walker Royce
•  Software Project Management, Addison-Wesley,

ISBN0-201-30958-0

•  Watts Humphrey
•  Managing the Software Process, SEI Series in

Software Engineering, Addison Wesley, ISBN
0-201-18095-2

92
© 2008 Bernd Bruegge
 Software Engineering Winter 2008-9

Additional Readings (3)

•  George Pólya
•  How to Solve It, 2nd ed., Princeton University Press,

1957, ISBN 0-691-08097-6

•  Software Process Engineering Metamodel SPEM
2.0

•  http://www.omg.org/spec/SPEM/2.0/PDF

