Software Engineering I: Software Technology

WS 2008/09

The UML 2.0 meta model

Prof. Bernd Bruegge, Ph.D. Florian Schneider

Applied Software Engineering
Technische Universitaet Muenchen

Outline for today

- From model instances to meta models
- MOF meta model hierarchy
- How UML relates to MOF
 - Example: Use case diagram meta model
 - Example: Class diagram meta model
- Different notations for the UML meta model describe the same language
- UML Profiles: Adding new members to the family

Canonical model-instance-relationship:

aPerson is an instance of the class Person.

Canonical model-instance-relationship:

aPerson is an instance of the class Person.

Thus the class Person is a model for aPerson.

Canonical model-instance-relationship:

aPerson is an instance of the class Person.

Thus the class Person is a model for aPerson.

Canonical model-instance-relationship:

aPerson is an instance of the class Person.

Thus the class Person is a model for aPerson.

Can we generalize this relationship?

Canonical model-instance-relationship:

aPerson is an instance of the class Person.

Thus the class Person is a model for a Person.

- Can we generalize this relationship?
 - → What is the model for the class Person?

- The instance aPerson and the class Person are on different levels of abstraction
- The class Person specifies features that characterize the structure and behavior of *Persons*
- → The model for the class Person must characterize the structure and behavior of *classes*

Relationship between model and meta-model:

The meta class Class is a model for the class
 Person

- The meta class Class is a model for the class
 Person
- Since Person is a model (for the instance aPerson),
 Class is a meta model (model for models)

At first this might be confusing, so:

At first this might be confusing, so:

– Think of the different layers of abstraction:

At first this might be confusing, so:

- Think of the different layers of abstraction:
 - Instances are concrete

At first this might be confusing, so:

- Think of the different layers of abstraction:
 - Instances are concrete
 - Models are an abstract description of the instances

At first this might be confusing, so:

- Think of the different layers of abstraction:
 - Instances are concrete
 - Models are an abstract description of the instances
 - Meta models are an abstract description of models

• ...

Why do we need them?

 Meta models can be used for instance to formalize UML notations:

- Meta models can be used for instance to formalize UML notations:
 - The UML is a Language, meta models are used to describe the grammar

- Meta models can be used for instance to formalize UML notations:
 - The UML is a Language, meta models are used to describe the grammar
 - The UML meta model describes all models one can create using UML

- Meta models can be used for instance to formalize UML notations:
 - The UML is a Language, meta models are used to describe the grammar
 - The UML meta model describes all models one can create using UML
 - The meta model allows to talk about semantics.

OK, so meta models are cool, but how do I create a meta model?

Meta models

OK, so meta models are cool, but how do I create a meta model?

To approach this problem, we will look at the history of UML's meta model first.

First there was UML which had semantic problems

- First there was UML which had semantic problems
- The OMG tried to formalize meta models

- First there was UML which had semantic problems
- The OMG tried to formalize meta models
- They realized that all they needed to describe meta models was a subset of UML class diagram elements

- First there was UML which had semantic problems
- The OMG tried to formalize meta models
- They realized that all they needed to describe meta models was a subset of UML class diagram elements
- To describe any meta model, we can use the UML class diagram notation!

Meta Object Facility (MOF)

Meta Object Facility (MOF)

 The OMG introduced the MOF to create a common approach to meta modeling

Meta Object Facility (MOF)

- The OMG introduced the MOF to create a common approach to meta modeling
- A meta model which is defined using MOF is called "MOF compliant"

Advantages of MOF compliant meta models

- They can easily be compared
- Their instances (models) can be exchanged in a standardized way (XML Metadata Interchange)
- Their instances can live in the same metadata repository (data warehousing)

Meta Object Facility (MOF) - Facts

Meta Object Facility (MOF) - Facts

In general, the sequence instance \rightarrow model \rightarrow meta model \rightarrow meta-meta model \rightarrow ... could be continued infinitely.

Meta Object Facility (MOF) - Facts

In general, the sequence

instance → model → meta model → meta-meta model →...

could be continued infinitely.

- MOF defines a four-layer meta model hierarchy
 - four layers suffice for most practical applications
- MOF and UML are aligned
 - UML infrastructure contains concepts for UML and MOF

Where are we?

- ✓ From model instances to meta models
- ✓ MOF meta model hierarchy
- How UML relates to MOF
 - Example: Use case diagram meta model
 - Example: Class diagram meta model
- Different notations for the UML meta model describe the same language
- UML Profiles: Adding new members to the family

How UML relates to MOF

How UML relates to MOF

UML is MOF-compliant:

The UML meta model is an instance of the MOF model

How UML relates to MOF

UML is MOF-compliant:

The UML meta model is an instance of the MOF model

Let's see the UML meta model in action!

Where are we?

- ✓ From model instances to meta models
- ✓ MOF meta model hierarchy
- ✓ How UML relates to MOF
 - ✓ Example: Use case diagram meta model
 - ✓ Example: Class diagram meta model
- Different notations for the UML meta model describe the same language
- UML Profiles: Adding new members to the family

Notations for the UML meta model

- The UML meta model defines a language for specifying UML models
- The notation used to depict UML models provides graphical constructs representing instances of meta model elements (Sticky figure represents an Actor)
- The notation is a function from meta model elements to model elements $("uml-notation(Actor) = \chi")$

Where are we?

- ✓ From model instances to meta models
- ✓ MOF meta model hierarchy
- ✓ How UML relates to MOF
 - ✓ Example: Use case diagram meta model
 - ✓ Example: Class diagram meta model
- ✓ Different notations for the UML meta model describe the same language
- > UML Profiles: Adding new members to the family

UML Profiles

- consist of stereotypes, tagged values and constraints
- customize UML models for particular domains or platforms
- are applied to elements of the UML meta model (M2)!
- are developed by manufacturers or standardization organizations (CORBA, .NET)

Applying UML Profiles

- By applying a UML profile,
 - you apply stereotypes to meta classes
 - you provide a deeper meaning for the model
 - the model gains integrity
 - you narrow the amount of valid models, as you can see on the following slide...

UML Profiles

Further reading

- MOF specification
 - URL to be delivered through the exercise portal
- Again, the UML 2 specification
 - See UML 2 Slides

Organizational Matters 1

- Mid term exam
 - Thursday, December 18th 17:30
 - Room to be announced
 - Registration procedure to be announced

Organizational Matters 2"

- For those of you interested in doing the homework, please read through the exercise sheet
 - Questions?
 - Please deliver the solution on Thursday, October
 30th
 - Paper based: before the exercise
 - E-Mail based: send e-mail to Florian Schneider, same deadline