
Continuous User Understanding for
the Evolution of Interactive Systems

Jan Ole Johanssen
Technical University of Munich
Munich, Germany
jan.johanssen@in.tum.de

ABSTRACT
Continuous Software Engineering (CSE) activities, i.e., rapidly delivering new software functionality
to software users and implementing received feedback, have became an established development
practice for creating interactive systems. The frequency of software changes turns the feedback loop
with users into a critical element of CSE that has not been addressed sufficiently; thus, it may be
challenging for developers to understand users’ software usage. This research project aims to enable
a better understanding of users during CSE. We investigate relevant usage knowledge needs, the
unobtrusive collection of usage data by software and hardware sensors, how usage data can be related
to feature increments, and ways to externalize tacit usage knowledge. Leveraging these insights, we
develop a platform to monitor, visualize, and understand usage knowledge to support developers
during the design and development of interactive systems. The overall goal is to accurately fit the
functionality of interactive systems to user needs.

CCS CONCEPTS
• Information systems → Users and interactive retrieval; • Human-centered computing →
HCI design and evaluation methods; Interactive systems and tools; • Software and its engineer-
ing→ Software creation and management; Agile software development ; Designing software;

EICS ’18, June 19–22, 2018, Paris, France
© 2018 Copyright held by the owner/author(s).
This is the author’s version of the work. It is posted here for your personal use. Not for redistribution. The definitive Version of
Record was published in EICS ’18: EICS ’18: ACM SIGCHI Symposium on Engineering Interactive Computing Systems, June 19–22,
2018, Paris, France, https://doi.org/10.1145/3220134.3220149.

https://doi.org/10.1145/3220134.3220149


Continuous User Understanding for the Evolution of Interactive Systems EICS ’18, June 19–22, 2018, Paris, France

KEYWORDS
User Understanding; Usage Monitoring; User Behavior; Interactive System; Continuous Software
Engineering

ACM Reference Format:
Jan Ole Johanssen. 2018. Continuous User Understanding for the Evolution of Interactive Systems. In EICS ’18:
EICS ’18: ACM SIGCHI Symposium on Engineering Interactive Computing Systems, June 19–22, 2018, Paris, France.
ACM, New York, NY, USA, 6 pages. https://doi.org/10.1145/3220134.3220149

INTRODUCTIONScenario — A mobile navigation application
provides a function to select different map
views, such as terrain or satellite views. The
individual views are selected by a menu item
in the application’s sidebar. As a feature im-
provement, this function is implemented as a
dedicated button that is permanently visible.
Here, the overall intention is to facilitate the
change between map views. However, due to
the change, users may no longer find the fea-
ture and consequently stop using it, perhaps
even without their knowledge. This reduces the
chances that users will report the issue, thereby
potentially making the problem less detectable.
In general, feature usage declines due to an
unfavorable change in a software iteration; a
situation that might be detectable. Developers
require such information to support decisions
and evaluate changes introduced in incremen-
tal software development.

Sidebar 1: A scenario that highlights
the importance of user understanding
during software development.

The term Continuous Software Engineering (CSE) refers to various activities, such as continuous
integration and continuous delivery, to rapidly iterate on software increments to facilitate continuous
learning and improvement [3, 5]. The frequent delivery of functionality to users opens new possibilities
and enables direct involvement of users in the software development process. Consequently, software
is developed according to the users’ needs.

However, CSE poses new challenges regarding the understanding of users. First, typically only early
adopters or a subset of the development team access a new system version. Thus, the dataset obtained
for analysis is sparse. Second, the frequent release of software increments makes qualitative feedback
in the form of written reviews or interviews a less useful approach to understand how the software is
being used. Generally, users tend to avoid explicit feedback because this requires additional efforts.
Third, in consideration of interweaving development threads that are frequently deprecated by new
software increments, relating implicit and explicit user feedback to the feature under development
becomes a complex task. Lastly, developers do not have access to tacit knowledge that is hidden in
user interactions and may become relevant for the development process. To illustrate the relationship
between CSE and user understanding, consider the scenario in Sidebar 1 on the left side.

In summary, even though usage knowledge represents a key success factor for software development,
compared to CSE activities such as continuous integration or continuous delivery, the activity of
understanding users has not reached a similar maturity level. Therefore, we are investigating solutions
to close the gap in the continuous feedback loop.

RELATEDWORK
Users and their interactions, i.e., how they apply software, form the core of an active research area: for
example, Röhm introduced the MALTASE framework to follow user interactions and help developers
utilize the resulting information [12]. Pagano proposed the PORTNEUF framework to encourage user
feedback and provided a method to assess the importance of individual feedback [11]. Similar to the
work of Röhm and Pagano, we focus on a platform to support developers.

https://doi.org/10.1145/3220134.3220149


Continuous User Understanding for the Evolution of Interactive Systems EICS ’18, June 19–22, 2018, Paris, France

Several researchers have investigated the automatic generation of personas based on user inter-
actions or social media data [10, 14]. Almeida et al. acknowledged a need for the human computer
interaction community to consider usability smells, which are similar to code smells [6], to increase
quality and maintainability of interactive applications [1]. Following this idea of smells, we address
the problem from a user perspective, which is different from Almeida et al.’s approach, who described
a developer-driven perspective. In other words, we attempt to derive behavioral smells that help us
understand how users perceive the design and development of an interactive system.

Understanding users is an important source of information; existing approaches from other domains
might be applied to software engineering—and vice versa. For example, Banovic highlighted how large
amounts of behavior log data can be used to understand complex human routines [2].

PROBLEM STATEMENT
CSE activities, such as continuous delivery, have transformed software evolution in a rapidly iterating
process of developing new functionality and integrating feedback. However, the maturity level of user
understanding is not keeping pace with recently evolving CSE activities. This has created a demand for
development support in CSE environments, i.e., the need for a continuous user understanding activity.

RESEARCH QUESTIONS
To investigate user understanding in the CSE context, we aim to answer four research questions:

RQ1 What is relevant usage knowledge that stakeholders lack about users and their interactions?

Understanding usage knowledge needs represents the foundation of this work. Answers to this
question identify actual usage knowledge needs and strengthen ideas about how to integrate a
continuous user understanding activity into CSE activities.

RQ2 How to enable the unobtrusive collection of usage data from the silent majority of users?

Most users refrain from providing explicit feedback; thus, we want to explore various approaches
to collect implicit user feedback by utilizing a variety of software and hardware sensors.

RQ3 How to relate usage data to features or individual software increments?

After usage data are collected, the data must to be linked to the feature under development. We
explore various ways to establish such links, e.g., commit-based references or more fine-grained
approaches on code level.

RQ4 How to externalize tacit usage knowledge?

By bringing together usage knowledge and other context information about the application,
we want to determine to which extent we can extract tacit knowledge, i.e., knowledge that is
deeply ingrained in the mind of users and difficult to verbalize.



Continuous User Understanding for the Evolution of Interactive Systems EICS ’18, June 19–22, 2018, Paris, France

RESEARCH APPROACH
An on-going literature review is being performed to answer the research questions, in particular RQ1.
This strengthens our understanding of how the user understanding domain is currently approached.
Since CSE is also heavily influenced by industry, we are continuously analyzing available tools on the
market in terms of their functionalities and the way they integrate with existing CSE activities.
Furthermore, we have performed an extensive empirical study with 24 industry practitioners

regarding different aspects of CSE. One of our goals was to better understand practitioners’ needs for
user understanding and derive requirements for a platform to enable continuous user understanding.

To explore the full spectrum of user understanding, we are working on a prototypical implementation
of a platform for continuous user understanding. To evaluate the platform and assess theoretical
concepts, we are planning to perform multiple case studies in industry settings.

RESULTS TO DATE
The analysis of practitioners’ knowledge needs has formed a major element of our research to date,
establishing a basis for continuous user understanding. Therefore, regarding RQ1, we published the
initial results of the empirical study with practitioners [9] and plan to evaluate the remaining parts
of the interviews in the future. The study’s results point to interesting findings in currently applied
approaches as well as needs for future additions to CSE activities.

To explore the unobtrusive collection of usage data as part of RQ2, we investigated human cognitive
load during knowledge work measured by consumer wearable sensors [13]. Although this research
was performed in smart environments, a setting apart from software engineering, this reflects a first
step in understanding users based solely on implicit data. The gained insight will be transformed into
CSE practices as one of our next steps.

To address RQ3, we explored ideas about how usage knowledge can be combined with other types
of knowledge [7], and described a proposal for usage knowledge visualization in the CSE context
using a knowledge dashboard and widgets reflects our first contribution to answering RQ4 [8].

CURRENT STATUS AND NEXT STEPS
After clearing up the CSE setting and knowledge needs, we will enter the pivotal part of this research
project, i.e., continuously understanding users in the context of software evolution.

In practice, this involves the extraction of information from usage data, e.g., automatically classifying
users into different groups, and system-related information, such as usability problems, based solely
on implicit data, such as taps. We also strive to integrate other aspects from the affective computing
domain, since we have obtained promising results for involving user emotions. However, this aspect
requires more work to become a valuable contribution relative to addressing RQ2 and RQ3.



Continuous User Understanding for the Evolution of Interactive Systems EICS ’18, June 19–22, 2018, Paris, France

Currently, we are working on an implementation of the platform on a prototypical basis to evaluate
the concepts and explore user behavior in CSE settings. We refer to this as the Continuous User
Understanding plattform (CUU, pronounced "see you"). CUU enables developers to inspect usage
knowledge and thereby addresses RQ2 to RQ4. The implementation follows an incremental approach.
A first major version of CUU was developed in recent months and will be ready to function in multiple
real-world industry settings in the 2018 summer term: We will deploy CUU in our capstone course [4],
in which up to 100 students work in development teams on problems posed by industrial partners,
which we consider to be an ideal testbed. Based on the insights derived from this evaluation, we will
continue to implement a second major iteration, incorporate lessons-learned, followed by a potential
second deployment in the capstone course during the 2018/19 winter term.

EXPECTED CONTRIBUTIONS
The expected contributions of this research are diverse. Some build on each other, given the structure
of the research questions. For example, RQ1 forms a foundation for RQ2 to RQ4.
First, a formalized process of integrating usage knowledge into a CSE pipeline will be presented

and made available for integration in an applied setting. Thereby, the process loop of committing
code followed by automatically testing and delivering software increments is being completed with a
continuous user understanding activity.
Second, the CUU platform including a meta model of how to integrate and combine it with

other CSE processes, e.g., continuous delivery, is being developed on a prototypical basis. CUU is
expected to facilitate the understanding of user behavior between software builds, which is enabled by
visual representation of different knowledge types. Further, an evaluation and assessment of CUU’s
functionality will reflect an important contribution to validate its benefits.
Third, a set of so-called user anti-patterns that describe typical user behavior during interactive

system usage will be developed. These user anti-patterns should allow a simplified understanding of
users aiming at increased comprehension of software evolution, thereby resulting in fast iterations
with target-oriented improvements. Grouped and organized contextually, these user anti-patterns
will support developers reactions to changes in feature usage by users. The user anti-patterns can be
applied by software engineers and other domains experts.

This research project started two years ago. We expect to finish developing the CUU platform over
the course of this year and to complete this phase with an analysis and assessment of the results.

ACKNOWLEDGMENTS
I thank my supervisor Professor Bernd Bruegge as well as Professor Barbara Paech and Anja Kleebaum.
This research is supported by the DFG (German Research Foundation) under the Priority Programme
SPP1593: Design For Future – Managed Software Evolution (CURES project).



Continuous User Understanding for the Evolution of Interactive Systems EICS ’18, June 19–22, 2018, Paris, France

REFERENCES
[1] Diogo Almeida, José Creissac Campos, João Saraiva, and João Carlos Silva. 2015. Towards a Catalog of Usability

Smells. In Proceedings of the 30th Annual ACM Symposium on Applied Computing (SAC ’15). ACM, 175–181. https:
//doi.org/10.1145/2695664.2695670

[2] Nikola Banovic. 2017. Method for Understanding Complex Human Routine Behaviors from Large Behavior Logs. In
Proceedings of the 2017 CHI Conference Extended Abstracts on Human Factors in Computing Systems (CHI EA ’17). ACM,
254–258. https://doi.org/10.1145/3027063.3027135

[3] Jan Bosch. 2014. Continuous Software Engineering: An Introduction. Springer International Publishing, Cham, 3–13.
https://doi.org/10.1007/978-3-319-11283-1_1

[4] Bernd Bruegge, Stephan Krusche, and Lukas Alperowitz. 2015. Software Engineering Project Courses with Industrial
Clients. ACM Transactions on Computing Education 15, 4, Article 17 (Dec. 2015), 31 pages. https://doi.org/10.1145/2732155

[5] Brian Fitzgerald and Klaas-Jan Stol. 2017. Continuous software engineering: A roadmap and agenda. Journal of Systems
and Software 123 (2017), 176 – 189. https://doi.org/10.1016/j.jss.2015.06.063

[6] Martin Fowler and Kent Beck. 1999. Refactoring: improving the design of existing code. Addison-Wesley Professional.
[7] Jan Ole Johanssen, Anja Kleebaum, Bernd Bruegge, and Barbara Paech. 2017. Towards a Systematic Approach to Integrate

Usage and Decision Knowledge in Continuous Software Engineering. In Proceedings of the 2nd Workshop on Continuous
Software Engineering. 7–11.

[8] Jan Ole Johanssen, Anja Kleebaum, Bernd Bruegge, and Barbara Paech. 2017. Towards the Visualization of Usage and
Decision Knowledge in Continuous Software Engineering. In 2017 IEEE Working Conference on Software Visualization
(VISSOFT). 104–108. https://doi.org/10.1109/VISSOFT.2017.18

[9] Jan Ole Johanssen, Anja Kleebaum, Barbara Paech, and Bernd Bruegge. 2018. Practitioners’ Eye on Continuous Software
Engineering: An Interview Study. In Proceedings of the International Conference on Software and System Processes. Accepted
for publication (May 2018).

[10] Soon-Gyo Jung, Jisun An, Haewoon Kwak, Moeed Ahmad, Lene Nielsen, and Bernard J. Jansen. 2017. Persona Generation
from Aggregated Social Media Data. In Proceedings of the 2017 CHI Conference Extended Abstracts on Human Factors in
Computing Systems (CHI EA ’17). ACM, 1748–1755. https://doi.org/10.1145/3027063.3053120

[11] Dennis Pagano. 2013. Portneuf - A Framework for Continuous User Involvement. Dissertation. Technical University of
Munich.

[12] Tobias Röhm. 2015. The MALTASE Framework For Usage-Aware Software Evolution. Dissertation. Technical University of
Munich.

[13] Florian Schaule, Jan Ole Johanssen, Bernd Bruegge, and Vivian Loftness. 2018. Employing Consumer Wearables to Detect
Office Workers’ Cognitive Load for Interruption Management. Proceedings of the ACM on Interactive, Mobile, Wearable
and Ubiquitous Technologies 2, 1, Article 32 (March 2018), 20 pages. https://doi.org/10.1145/3191764

[14] Xiang Zhang, Hans-Frederick Brown, and Anil Shankar. 2016. Data-driven Personas: Constructing Archetypal Users with
Clickstreams and User Telemetry. In Proceedings of the 2016 CHI Conference on Human Factors in Computing Systems (CHI
’16). ACM, 5350–5359. https://doi.org/10.1145/2858036.2858523

https://doi.org/10.1145/2695664.2695670
https://doi.org/10.1145/2695664.2695670
https://doi.org/10.1145/3027063.3027135
https://doi.org/10.1007/978-3-319-11283-1_1
https://doi.org/10.1145/2732155
https://doi.org/10.1016/j.jss.2015.06.063
https://doi.org/10.1109/VISSOFT.2017.18
https://doi.org/10.1145/3027063.3053120
https://doi.org/10.1145/3191764
https://doi.org/10.1145/2858036.2858523

	Abstract
	Introduction
	Related Work
	Problem Statement
	Research Questions
	Research Approach
	Results to Date
	Current Status and Next Steps
	Expected Contributions
	Acknowledgments
	References

