s
DN
BaXe)
o C
=
<3
0 2
ol
=%]
c O
OO0

SWRISAS bulbuey)d pue xa|dwo) buisnbuo)
buleaulbu3 8.remijos peIus1I0-181q0

Exercise 2.6

Draw a seguence diagram for the war ehouseOnFi r e scenario (as
described in the requirements elicitation lecture).

Include the objects bob, alice, john, system, and instances of other
classes you may need.

Draw only the first five message sends.

Bernd Bruegge & Allen Dutoit Object-Oriented Software Engineering: Conquering Complex and Changing Systems 2

Solutionsto exercise 2.6

| nitiating actor shoum ﬁ)ispatcher should be

beon thisside. [All objectsinvolvedin | on thisside

this scenario ar e instances. AN
Q Thisishow an object

A A . FRI END creation lookslike.

bob v'| chn

allce I E For nm()
new Enmer gencyFor
report Ener gencw | 9 > =

B : EnergencyForm

schi fyvl nci dent () - !

commi t () | noti f yDi spat cher ()

I
I
I
r equest'Resour ce(fireTr ug‘ I I
I
I

Note: this exercise can have many other acceptable solutions.

Bernd Bruegge & Allen Dutoit Object-Oriented Software Engineering: Conquering Complex and Changing Systems 3

Exercise 2.7

Draw a sequence diagram for the Report I nci dent use case (as
described in the requirements elicitation lecture).

Make sure it is consistent with the sequence diagram of the previous
EXercise.

Draw only the first five message sends.

Bernd Bruegge & Allen Dutoit Object-Oriented Software Engineering: Conquering Complex and Changing Systems

Sample solution to exercise 2.7
" Class and oper ation —~ Thisisa use case,

names should bethe hence,_we are dealing
same asin the previous with classes. %

diagram. =

i
Fi el dOFfice ! Di spét cher
| new Emer gencyFor m()

report Ener genc
wD—P Enmer gencyFor m

schi fyl nci dent () - '

I
I
I
*rdquest Resour ce()] |
I
I

I
\ it() |noti fyDi spat cher ()

Thisishow an iteration = . e
IS specified.

I I
Note: this exercise can have many other acceptable solutions, as before.

Bernd Bruegge & Allen Dutoit Object-Oriented Software Engineering: Conquering Complex and Changing Systems

Qutline

From use cases to objects

~ Object modeling

- Class vsinstance diagrams

- Attributes

* Operations and methods
Links and associations
Examples of associations

~ Two special associations
+ Aggregation
¢ [nheritance

Bernd Bruegge & Allen Dutoit Object-Oriented Software Engineering: Conquering Complex and Changing Systems

User

From Use Cases to Objects Tasks
g,

(Level 1) Level Use Case

(Level 2) Leve 2 Level 2 Use Cases

CLeveI 3) CLeveI 3) Level 3) Level 3UseCases

(Level 4) Leve 4 Operations
A B
) — Participating
« — Objects
o h J

Bernd Bruegge & Allen Dutoit Object-Oriented Software Engineering: Conquering Complex and Changing Systems 7

From Use Cases to Objects. Why Functional
Decomposition is not Enough

(Level 1) Scenarios

(Level 2) Leve 2 Level 1 Use Cases
Level 3 CLeveI 3) Level 3) Level 2UseCases

(Level 4) Level 4 Operations
A B
Participating
‘ | Objects

Bernd Bruegge & Allen Dutoit Object-Oriented Software Engineering: Conquering Complex and Changing Systems 8

How do we describe complex systems (Natural Systems, Social
Systems, Artificial Systems)?

Epistemology
Describes our knowledge about the system

K nowledge about Causality Knowledge about Relationships Knowledge about Functionality
(Dynamic Model) (Object model) (Functional model)
/\Sequence Formal Neurdl
State Diagr a . Diagrams Specifications Networks
(Haré€l) Activity :
(Liskov)

DataFlow Diagrams
(SA/SD)

Diagrams

Scenarios/Use Cases

Petri Nets(Petri) (Jacobson)

Inheritance Data Relationship
Frames,SemanticNetw (E/R Modeling, Chen)

orks (Minsky)

Uncertain Knowledge
Fuzzy Sets (Zadeh)

Class Diagrams Hierarchical Network Relational
Fuzzy Frames (“E/R + Inheritance”, Database Database Database Model
(Graham) Rumbaugh) Model (IMS) Model (Codd)
(CODASYL)

Bernd Bruegge & Allen Dutoit Object-Oriented Software Engineering: Conquering Complex and Changing Systems 9

Definition: Object Modeling

Main goal: Find the important abstractions

- What happens if we find the wrong abstractions?

+ |terate and correct the mode

Steps during object modeling
+ 1. Classidentification

+ Based on the fundamental assumption that we can find abstractions

¢ 2. Find the attributes
¢ 3. Find the methods
+ 4. Find the associations between classes

Order of steps
+ Goal: get the desired abstractions
¢ Order of steps secondary, only a heuristic
¢ |teration isimportant

Bernd Bruegge & Allen Dutoit Object-Oriented Software Engineering: Conquering Complex and Changing Systems

10

Class | dentification

|dentify the boundaries of the system
|dentify the important entities in the system
Class identification is crucial to object-oriented modeling
Basic assumption:
+ 1. Wecan find the classes for a new software system (Forward
Engineering)

+ 2. Wecan identify the classesin an existing system (Reverse
Engineering)

- Why can we do this?
+ Philosophy, science, experimental evidence

Bernd Bruegge & Allen Dutoit Object-Oriented Software Engineering: Conquering Complex and Changing Systems

11

Class identification is an ancient problem

 Objects are not just found by taking a picture of a scene or domain
~ The application domain has to be analyzed.

- Depending on the purpose of the system different objects might be
found
+ How can we identify the purpose of a system?
¢ Scenarios and use cases
 Another important problem: Define system boundary.
+ \What object isinside, what object is outside?

Bernd Bruegge & Allen Dutoit Object-Oriented Software Engineering: Conquering Complex and Changing Systems 12

What is This?

Bernd Bruegge & Allen Dutoit

Object-Oriented Software Engineering: Conquering Complex and Changing Systems

13

Pieces of an Object Model

Classes

- Associations (Relations)

+ Part of- Hierarchy (Aggregation)
¢ Kind of-Hierarchy (Generalization)

- Attributes
¢ Detection of attributes
+ Application specific
+ Attributesin one system can be classesin another system
¢ Turning attributesto classes

M ethods

¢ Detection of methods
+ Generic methods. General world knowledge, design patterns
¢+ Domain Methods. Dynamic model, Functional model

Bernd Bruegge & Allen Dutoit Object-Oriented Software Engineering: Conquering Complex and Changing Systems

14

Object vs Class

Object (instance): Exactly one thing
¢+ Thelectureon November 2 on Software Engineering from 14:30 -16:00
- A class describes a group of objects with similar properties
¢+ |[ETM, Author, Corrosion, Work order
Object diagram: A graphic notation for modeling objects, classes and
their relationships (" associations'):

+ Classdiagram: Template for describing many instances of data. Useful for
taxonomies, patters, schemata...

¢+ Instance diagram: A particular set of objectsrelating to each other. Useful
for discussing scenarios, test cases and examples

- Together-J. CASE Tool for building object diagrams, in particular
class diagrams

¢ Tutorial on November 10

Bernd Bruegge & Allen Dutoit Object-Oriented Software Engineering: Conquering Complex and Changing Systems 15

UML: Classand Instance Diagrams

Inspector

joe:
Inspector

Bernd Bruegge & Allen Dutoit

mary:
Inspector

Class Diagram

anonymous:
Inspector

| nstance Diagram

Object-Oriented Software Engineering: Conquering Complex and Changing Systems

16

Attributes and Values

Inspector

name:string

age:

integer

joe: Inspector

name = ‘“Joe”’
age = 24

mary: Inspector

name = “Mary”
age = 18

Bernd Bruegge & Allen Dutoit Object-Oriented Software Engineering: Conquering Complex and Changing Systems

17

Operation, Signature or Method? What when?

Operation: A function or
transformation applied to objectsin a
class. All objectsin aclass share the
same operations (Analysis Phase)

Signature: Number & types of
arguments, type of result value. All
methods of a class have the same
signature (Object Design Phase)

Method: Implementation of an
operation for a class (Implementation
Phase)

Polymor phic operation: The same
operation applies to many different
classes.

Workorder

File name: String

Size 1In_bytes: i1nteger
Last _update: date
Stickies: array[max]

print()
delete()
open()
close()
write()
read()

Bernd Bruegge & Allen Dutoit Object-Oriented Software Engineering: Conquering Complex and Changing Systems 18

Links and Associations

Links and associations establish relationships among objects and
classes.
Link:

+ A connection between two object instances. A link islikeatuple.

+ A link isan instance of an association

Association:
+ Basically a bidirectional mapping.
+ One-to-one, many-to-one, one-to-many,
+ An association describes a set of linkslike a class describes a set of objects.

Bernd Bruegge & Allen Dutoit Object-Oriented Software Engineering: Conquering Complex and Changing Systems 19

1-to-1 and 1-to-many Associations

Country

Has-
capital

name:String

City

name:String

Workorder

One-to-one association

StickyNote

x> Integer

schedule()

Bernd Bruegge & Allen Dutoit

y: Integer
z: Integer

One-to-many association

Object-Oriented Software Engineering: Conquering Complex and Changing Systems

20

Object I nstance Diagram

Examplefor 1-to-many

-:Sticky -WorkOrder -:Sticky

X,Y,z=(-1,0,5) X,Y,z=(1,10,1)

- Sticky

X,Y,z=(10,1,2)

Bernd Bruegge & Allen Dutoit Object-Oriented Software Engineering: Conquering Complex and Changing Systems 21

Many-to-Many Associations

Mechanics

* Work on *

Plane

Bernd Bruegge & Allen Dutoit

Object-Oriented Software Engineering: Conquering Complex and Changing Systems

22

Roles in Associations

Client Role:

+ An object that can operate upon other objectsbut that isnever operated
upon by other objects.

Server Role:

+ An object that never operates upon other objects. It isonly operated upon
by other objects.

-~ Agent Role:

+ An object that can both operate upon other objects and be operated upon
by other objects. An agent isusually created to do some work on behalf of
an actor or another agent.

Bernd Bruegge & Allen Dutoit Object-Oriented Software Engineering: Conquering Complex and Changing Systems 23

Do UML associations have direction?

+ A association between two classesis by default a bi-directional mapping.

A B

¢ Class A can access class B and class B can access class A
+ Both classes play the agent role.

Name Dir ection

accesse s

Association Directio

Class A (the“client”) accesses class B (“the server”). B isalso called
navigable

Bernd Bruegge & Allen Dutoit Object-Oriented Software Engineering: Conquering Complex and Changing Systems 24

Aggregation

- Models "part of" hierarchy

 Useful for modeling the breakdown of a product into its component
parts (sometimes called bills of materials (BOM) by manufacturers)

- UML notation: Like an association but with a small diamond
Indicating the assembly end of the relationship.

Bernd Bruegge & Allen Dutoit Object-Oriented Software Engineering: Conquering Complex and Changing Systems 25

Aggregation

Automobile
Engine serial number
horsepower year
volume manufacturer
model
on <> color <
off weight
drive
purchase
3,4.,5 * <f ?> 2,4
Wheel Brakelight Door Battery
diameter amps
number of bolts open volts
on close
off charge
discharge

Bernd Bruegge & Allen Dutoit Object-Oriented Software Engineering: Conquering Complex and Changing Systems

| nheritance

Models "kind of" hierarchy

Powerful notation for sharing similarities among classes while

preserving their differences

UML Notation: An arrow with atriangle

BloodCell

Cell

A

MuscleCell

NerveCell

A

Red

White

Bernd Bruegge & Allen Dutoit

Smooth

Striate

Cortical

Pyramidal

Object-Oriented Software Engineering: Conquering Complex and Changing Systems

27

Aggregation vs Inheritance

 Both associations describe trees (hierarchies)

+ Aggregation tree describes a-part-of relationships (also called
and-relationship)

¢ |Inheritancetree describes" kind-of" relationships (also called
or-relationship)

~ Aggregation relates instances (involves two or more
different objects)

- Inheritance relates classes (away to structure the
description of a single object)

Bernd Bruegge & Allen Dutoit Object-Oriented Software Engineering: Conquering Complex and Changing Systems 28

Other Associations

Uses:
* A subsystem uses another subsystem (System Design)

Contains:
+ Sometimes called “ spatial aggregation”
¢ .. contains...
+ Example: A UML package contains another UML package

Parent/child relationship:

* .. isfather of ...
¢ ...ismother of ...

Seniority:
¢ ... isolder than ...
¢ ...ismoreexperienced than ...

Bernd Bruegge & Allen Dutoit Object-Oriented Software Engineering: Conquering Complex and Changing Systems

29

Odds and Ends

Hoererschealn for the book:

+ Participating Bookstores: If you say you aretaking this class, you get 10%
off at:

¢ Buchladen am Obelisk (Barerstrasse),
¢ Kanzler (Gabelsbergerstrasse),
¢ Lachner (Theresienstrasse)

Solution to last exercise
Finding a superclass

Bernd Bruegge & Allen Dutoit Object-Oriented Software Engineering: Conquering Complex and Changing Systems 30

Object Typesl11/2/00

Entity Objects

* Represent the persistent infor mation tracked by the system (Application
domain objects, “Business objects’)

Boundary Objects
* Represent the interaction between the user and the system

- Control Objects:
* Represent the control tasks performed by the system
Having three types of objects leads to models that are more resilient
to change.
+ Theboundary of a system changes more likely than the control
+ Thecontrol of the system change morelikely than the application domain

 Object types originated in Smalltalk:
* Moddl, View, Controller (MVC) => Observer Pattern

Bernd Bruegge & Allen Dutoit Object-Oriented Software Engineering: Conquering Complex and Changing Systems 31

Example: 2BWatch Objects

UML provides several mechanisms to extend the language

UML provides the stereotype mechanism to present new modeling
elements

<<entity>> <<control>> <<boundary>>
Year ChangeDateControl ButtonBoundary
<<entity>> <<boundary>>
Month LCDDisplayBoundary
<<entity>>
Day

Bernd Bruegge & Allen Dutoit Object-Oriented Software Engineering: Conquering Complex and Changing Systems 32

Roles

A role name is the name that uniquely identifies one end of an
association.

A role name is written next to the association line near the class that
playstherole.

When do you use role names?

* Necessary for associations between two objects of the same class

+ Also useful to distinguish between two associations between the same pair
of classes

When do you not use role names?

¢ |f thereisonly a single association between a pair of distinct classes, the
names of the classes serve as good role names

Bernd Bruegge & Allen Dutoit Object-Oriented Software Engineering: Conquering Complex and Changing Systems 33

Example of Role

Problem Satement : A person assumes the role of repairer
with respect to another person, who assumes the role of
Inspector with respect to the first person.

Person Person

* Creates Workorders

Person |inspector Person

* Creates Workorders

repairperson

Bernd Bruegge & Allen Dutoit Object-Oriented Software Engineering: Conquering Complex and Changing Systems

Qualification

- The qualifier improves the information about the multiplicity of the
association between the classes.

It isused for reducing 1-to-many multiplicity to 1-1 multiplicity

Without qualification: A directory has many files. A file belongs only to one

directory.
_ 1 * Fi
o / filename

1 0..1

File

Directory filename

With qualification: A directory has many files, each with a unique name

Bernd Bruegge & Allen Dutoit Object-Oriented Software Engineering: Conquering Complex and Changing Systems 35

Example

Problem Statement : A stock exchange lists many companies.
However , a stock exchange lists only one company with a
given ticker symbol. A company may be listed on many stock
exchanges, possibly with different ticker symbols.

Find company with ticker symbol AAPL, DCX.

* lists * Company

StockExchange

tickerSym

Bernd Bruegge & Allen Dutoit Object-Oriented Software Engineering: Conquering Complex and Changing Systems

36

Use of Qualification reduces multiplicity

StockExchange

StockExchange

Compan

o —

tickerSym

Company

Bernd Bruegge & Allen Dutoit Object-Oriented Software Engineering: Conquering Complex and Changing Systems

37

How do you find classes?

- Learn about problem domain: Observe your client

- Apply general world knowledge and intuition

- Takethe flow of events and find participating objects in use cases
~ Apply design patterns

- Try to establish ataxonomy

- Do atextual analysis of scenario or flow of events (Abbott Textual
Analysis, 1983)

 Nouns are good candidates for classes

Bernd Bruegge & Allen Dutoit Object-Oriented Software Engineering: Conquering Complex and Changing Systems 38

Mapping parts of speech to object model components
[Abbot 1983]

Part of speech Model component Example

Proper noun obj ect Jm Smith
|mproper noun class Toy, doll

Doing verb method Buy, recommend
being verb Inheritance Is-a (kind-of)
having verb aggregation has an

modal verb constraint must be
adjective attribute 3 yearsold
transitive verb method enter

Intransitive verb method (event) depends on

Bernd Bruegge & Allen Dutoit Object-Oriented Software Engineering: Conquering Complex and Changing Systems 39

Example: Scenario from Problem Statement

- Jim Smith enters a store with the intention of buying atoy for his3
year old child.

- Help must be available within less than one minute.

~ The store owner gives advice to the customer. The advice depends on
the age range of the child and the attributes of the toy.

- Jim selects a dangerous toy which is unsuitable for the child.
 The store owner recommends a more yellow doll.

Bernd Bruegge & Allen Dutoit Object-Oriented Software Engineering: Conquering Complex and Changing Systems 40

Object Modeling in Practice: Class | dentification

Foo

Balance
Customerld

Deposit()
Withdraw()
GetBalance()

Class Identification: Name of Class, Attributes and Methods

Bernd Bruegge & Allen Dutoit Object-Oriented Software Engineering: Conquering Complex and Changing Systems

Object Modeling in Practice:
Encourage Brainstorming

Balance

Customerld

Deposit()
Withdraw()
GetBalance()

=]

Balance
Customerld

Deposit()
Withdraw()
GetBalance()

Naming isimportant!

Bernd Bruegge & Allen Dutoit

Account

Balance
Customerld

Deposit()
Withdraw()
GetBalance()

Object-Oriented Software Engineering: Conquering Complex and Changing Systems

42

Object Modeling in Practice

Account
Balance Customer
Bank Accountld
) Name
Name Deposit()
Withdraw() Customerld
GetBalance()

Find New ODbjects

Iterate on Names, Attributes and Methods

Bernd Bruegge & Allen Dutoit Object-Oriented Software Engineering: Conquering Complex and Changing Systems 43

Object Modeling in Practice: A Banking System

Account
Balance * Customer
Bank Accountld Has
) Name
Name Deposit()
Withdraw() Customerld
GetBalance()

Find New ODbjects

Iterate on Names, Attributes and Methods

Find Associations between Objects
Label the assocations
Determine the multiplicity of the assocations

Bernd Bruegge & Allen Dutoit Object-Oriented Software Engineering: Conquering Complex and Changing Systems 44

Object Modeling in Practice. Categorize!

Bank

Name

Account

Amount
Accountld

Deposit()
Withdraw()
GetBalance()

Customer

Has

Name

Customerld

Savings
Account

Checking
Account

Withdraw()

Mortgage
Account

Bernd Bruegge & Allen Dutoit

Withdraw()

Withdraw()

Object-Oriented Software Engineering: Conquering Complex and Changing Systems

Avoid Ravioli Models

Account
Bank Customer
*4 Amount * ¥
Name — Accountld as Name
Deposit()
Withdraw()
GetBalance() Customerld

Don’t put too many classes into the same package:
/+-2 (or even 5+-2)

Bernd Bruegge & Allen Dutoit Object-Oriented Software Engineering: Conquering Complex and Changing Systems 46

Avoid Ravioli Models. Put Taxonomiesin a separate View

Account

Amount
Accountld

Deposit()
Withdraw()
GetBalance()

Savings Checking Mortgage
Account Account Account

Withdraw() Withdraw() Withdraw()

Bernd Bruegge & Allen Dutoit Object-Oriented Software Engineering: Conquering Complex and Changing Systems 47

Object Modeling in Practice: Heuristics

- Explicitly schedule ateam meeting for object identification
~ Try to differentiate between entity, boundary and control objects

* Find associations and their multiplicity
+ Unusual multiplicities usually lead to new objectsor categories

- ldentify Aggregation
- ldentify Inheritance: Look for a Taxonomy, Categorize

- Allow time for brainstorming , Iterate, iterate

Bernd Bruegge & Allen Dutoit Object-Oriented Software Engineering: Conquering Complex and Changing Systems

Software Engineers are not the only System Analysts

Religion

Ontology
Object and System boundary identification

Phenomenology
Objects are user defined

Realism

Idealism Materialism

Naive ldealism

imagination. If | close my eye
don't exist (Berkeley)

Objects exist only in my

Critical Idealism

ritt) Marx Naive Realism
Reality is dgtermmed by Ideas are determined Things are exactly
s, they our ideas by the economic how we experience
(Kant, Hegel, reality them
Schopenhauer)

Dual

David Hume

istic Idealism

Monistic Idealism

Plato

‘| Schoeenhauer I

cocthe JERR, Steiner

Reality can never be
seen only its shadow.

Bernd Bruegge & Allen Dutoit

Kant
Ideas are made up by humans
"Ding an sich™:Reason for

perception but can never be
seen itself

Dialectism
Ideas are determined by the
dialog between the user and
reality
(Sokrates, Hegel, Marx)

Object-Oriented Software Engineering: Conquering Complex and Changing Systems 49

What is a Software Engineer?

~ From the point of view of phenomenology, Software
Engineers are dialectic monistic idealists:

¢ |dealists:

¢ They accept that ideas (called requirementsor “customer’swishlist”)
are different from reality.

¢ Thereality might not yet exist (“Vaporwareisalways possible™)

¢ They are monistic:
¢ They are optimistic that their ideas can describereality.

+ Dialectic:
+ They dothisin a dialogue with the customer

Bernd Bruegge & Allen Dutoit Object-Oriented Software Engineering: Conquering Complex and Changing Systems 50

Summary

In this lecture, we reviewed the construction of the object model from
use case moddl. In particular, we described:

- |dentification of objects

- Refinement of objects with attributes and operations
- Generalization of concrete classes

~ ldentification of associations

 Reduction of multiplicity using qualification.

In the next lecture, we describe the construction of the dynamic model
from the use case and object models.

Bernd Bruegge & Allen Dutoit Object-Oriented Software Engineering: Conquering Complex and Changing Systems 51

Exercises

5.6 Consider the object model below (adapted from [Jackson, 1995]):

Year

Y

Mont h

Y

W?ek

Y

Day

Given your knowledge of the Gregorian calendar, list all the problems
with this model. Modify it to correct each of them.

Bernd Bruegge & Allen Dutoit Object-Oriented Software Engineering: Conquering Complex and Changing Systems 52

EXxercises (cont’ d)

5.7 Consider the object model of the previous exercise. Using
association multiplicity only, can you modify the model such that a
developer unfamiliar with the Gregorian calendar could deduce the
number of daysin each month? Identify additional classes if
necessary.

Bernd Bruegge & Allen Dutoit Object-Oriented Software Engineering: Conquering Complex and Changing Systems 53

Next Steps

For all students:

+ Tomorrow: Requirements Elicitation Tutorial (REQ/QOC)
+ Next Thursday: Configuration M anagement
+ Next Friday: TogetherJ Tutorial

For STARS students:

¢+ GUI Mockup duetomorrow on Notes Bboard
¢ 2-3dides+ name of presenter for each team

¢+ GUI Mockup review on Monday 14:15

Bernd Bruegge & Allen Dutoit Object-Oriented Software Engineering: Conquering Complex and Changing Systems

