
C
on

qu
er

in
g

C
om

pl
ex

 a
nd

 C
ha

ng
in

g
Sy

st
em

s
O

bj
ec

t-
O

ri
en

te
d

So
ft

w
ar

e
E

ng
in

ee
ri

ng
Chapter 5, Analysis:
Object Modeling

Bernd Bruegge & Allen Dutoit Object-Oriented Software Engineering: Conquering Complex and Changing Systems 2

Exercise 2.6

Draw a sequence diagram for the warehouseOnFire scenario (as
described in the requirements elicitation lecture).

Include the objects bob, alice, john, system, and instances of other
classes you may need.

Draw only the first five message sends.

Bernd Bruegge & Allen Dutoit Object-Oriented Software Engineering: Conquering Complex and Changing Systems 3

Solutions to exercise 2.6

:FRIEND

:EmergencyForm
reportEmergency()

new EmergencyForm()

specifyIncident()

notifyDispatcher()

alice john

requestResource(fireTruck)

commit()

bob

Initiating actor should
be on this side.

Dispatcher should be
on this sideAll objects involved in

this scenario are instances.
This is how an object
creation looks like.

Note: this exercise can have many other acceptable solutions.

Bernd Bruegge & Allen Dutoit Object-Oriented Software Engineering: Conquering Complex and Changing Systems 4

Exercise 2.7

Draw a sequence diagram for the ReportIncident use case (as
described in the requirements elicitation lecture).

Make sure it is consistent with the sequence diagram of the previous
exercise.

Draw only the first five message sends.

Bernd Bruegge & Allen Dutoit Object-Oriented Software Engineering: Conquering Complex and Changing Systems 5

Sample solution to exercise 2.7

FRIEND

EmergencyForm
reportEmergency()

new EmergencyForm()

specifyIncident()

notifyDispatcher()

FieldOfficer Dispatcher

*requestResource()

commit()

This is a use case,
hence, we are dealing

with classes.

Class and operation
names should be the

same as in the previous
diagram.

This is how an iteration
is specified.

Note: this exercise can have many other acceptable solutions, as before.

Bernd Bruegge & Allen Dutoit Object-Oriented Software Engineering: Conquering Complex and Changing Systems 6

Outline

♦ From use cases to objects

♦ Object modeling

♦ Class vs instance diagrams

♦ Attributes

♦ Operations and methods

♦ Links and associations

♦ Examples of associations

♦ Two special associations
w Aggregation
w Inheritance

Bernd Bruegge & Allen Dutoit Object-Oriented Software Engineering: Conquering Complex and Changing Systems 7

From Use Cases to Objects

Level 1 Use Case

Level 2 Use Cases

Level 3 Use Cases

Operations

Participating
Objects

 Le vel 2

 Level 1

 Le vel 2

 Le vel 3 Le vel 3

 Le vel 4 Le vel 4

 Le vel 3

A B

User
Tasks

Bernd Bruegge & Allen Dutoit Object-Oriented Software Engineering: Conquering Complex and Changing Systems 8

From Use Cases to Objects: Why Functional
Decomposition is not Enough

Scenarios

Level 1 Use Cases

Level 2 Use Cases

Operations

Participating
Objects

 Le vel 2

 Level 1

 Le vel 2

 Le vel 3 Le vel 3

 Le vel 4 Le vel 4

 Le vel 3

A B

Bernd Bruegge & Allen Dutoit Object-Oriented Software Engineering: Conquering Complex and Changing Systems 9

How do we describe complex systems (Natural Systems, Social
Systems, Artificial Systems)?

Epistemology

Knowledge about Causality
(Dynamic Model)

Describes our knowledge about the system

Knowledge about Functionality
(Functional model)

Knowledge about Relationships
(Object model)

Neural
Networks

DataFlow Diagrams
(SA/SD)

Scenarios/Use Cases
(Jacobson)

Formal
Specifications

(Liskov)

 State Diagrams
(Harel)

 Petri Nets(Petri)
Inheritance

Frames,SemanticNetw
orks (Minsky)

Uncertain Knowledge
Fuzzy Sets (Zadeh)

Data Relationship
(E/R Modeling, Chen)

Hierarchical
 Database

Model (IMS)

Network
Database

Model
(CODASYL)

Relational
Database Model

(Codd)

Fuzzy Frames
(Graham)

Class Diagrams
(“E/R + Inheritance”,

Rumbaugh)

 Sequence
Diagrams

Activity
 Diagrams

Bernd Bruegge & Allen Dutoit Object-Oriented Software Engineering: Conquering Complex and Changing Systems 10

Definition: Object Modeling

♦ Main goal: Find the important abstractions

♦ What happens if we find the wrong abstractions?
w Iterate and correct the model

♦ Steps during object modeling
w 1. Class identification

t Based on the fundamental assumption that we can find abstractions

w 2. Find the attributes
w 3. Find the methods

w 4. Find the associations between classes

♦ Order of steps
w Goal: get the desired abstractions

w Order of steps secondary, only a heuristic
w Iteration is important

Bernd Bruegge & Allen Dutoit Object-Oriented Software Engineering: Conquering Complex and Changing Systems 11

Class Identification

♦ Identify the boundaries of the system

♦ Identify the important entities in the system

♦ Class identification is crucial to object-oriented modeling

♦ Basic assumption:
w 1. We can find the classes for a new software system (Forward

Engineering)

w 2. We can identify the classes in an existing system (Reverse
Engineering)

♦ Why can we do this?
w Philosophy, science, experimental evidence

Bernd Bruegge & Allen Dutoit Object-Oriented Software Engineering: Conquering Complex and Changing Systems 12

Class identification is an ancient problem

♦ Objects are not just found by taking a picture of a scene or domain

♦ The application domain has to be analyzed.

♦ Depending on the purpose of the system different objects might be
found
w How can we identify the purpose of a system?

w Scenarios and use cases

♦ Another important problem: Define system boundary.
w What object is inside, what object is outside?

Bernd Bruegge & Allen Dutoit Object-Oriented Software Engineering: Conquering Complex and Changing Systems 13

What is This?

Bernd Bruegge & Allen Dutoit Object-Oriented Software Engineering: Conquering Complex and Changing Systems 14

Pieces of an Object Model

♦ Classes

♦ Associations (Relations)
w Part of- Hierarchy (Aggregation)
w Kind of-Hierarchy (Generalization)

♦ Attributes
w Detection of attributes
w Application specific

w Attributes in one system can be classes in another system
w Turning attributes to classes

♦ Methods
w Detection of methods
w Generic methods: General world knowledge, design patterns

w Domain Methods: Dynamic model, Functional model

Bernd Bruegge & Allen Dutoit Object-Oriented Software Engineering: Conquering Complex and Changing Systems 15

Object vs Class

♦ Object (instance): Exactly one thing
w The lecture on November 2 on Software Engineering from 14:30 -16:00

♦ A class describes a group of objects with similar properties
w IETM, Author, Corrosion, Work order

♦ Object diagram: A graphic notation for modeling objects, classes and
their relationships ("associations"):
w Class diagram: Template for describing many instances of data. Useful for

taxonomies, patters, schemata...
w Instance diagram: A particular set of objects relating to each other. Useful

for discussing scenarios, test cases and examples

♦ Together-J: CASE Tool for building object diagrams, in particular
class diagrams
w Tutorial on November 10

Bernd Bruegge & Allen Dutoit Object-Oriented Software Engineering: Conquering Complex and Changing Systems 16

UML: Class and Instance Diagrams

Inspector

joe:
Inspector

mary:
Inspector

anonymous:
Inspector

Class Diagram

Instance Diagram

Bernd Bruegge & Allen Dutoit Object-Oriented Software Engineering: Conquering Complex and Changing Systems 17

Attributes and Values

name:string
age: integer

Inspector

name = “Joe”
age = 24

joe:Inspector

name = “Mary”
age = 18

mary: Inspector

Bernd Bruegge & Allen Dutoit Object-Oriented Software Engineering: Conquering Complex and Changing Systems 18

Operation, Signature or Method? What when?

♦ Operation: A function or
transformation applied to objects in a
class. All objects in a class share the
same operations (Analysis Phase)

♦ Signature: Number & types of
arguments, type of result value. All
methods of a class have the same
signature (Object Design Phase)

♦ Method: Implementation of an
operation for a class (Implementation
Phase)

 Polymorphic operation: The same
operation applies to many different
classes.

Workorder

File_name: String
Size_in_bytes: integer
Last_update: date
Stickies: array[max]

print()
delete()
open()
close()
write()
read()

Bernd Bruegge & Allen Dutoit Object-Oriented Software Engineering: Conquering Complex and Changing Systems 19

Links and Associations

♦ Links and associations establish relationships among objects and
classes.

♦ Link:
w A connection between two object instances. A link is like a tuple.

w A link is an instance of an association

♦ Association:
w Basically a bidirectional mapping.

w One-to-one, many-to-one, one-to-many,
w An association describes a set of links like a class describes a set of objects.

Bernd Bruegge & Allen Dutoit Object-Oriented Software Engineering: Conquering Complex and Changing Systems 20

1-to-1 and 1-to-many Associations

Has-
capital

One-to-one association

One-to-many association

City

name:String

Workorder

schedule()

StickyNote

x: Integer
y: Integer
z: Integer

*

Country

name:String

Bernd Bruegge & Allen Dutoit Object-Oriented Software Engineering: Conquering Complex and Changing Systems 21

Object Instance Diagram

 Example for 1-to-many

:Sticky

x,y,z=(-1,0,5)

:WorkOrder :Sticky

x,y,z=(1,10,1)

:Sticky

x,y,z=(10,1,2)

Bernd Bruegge & Allen Dutoit Object-Oriented Software Engineering: Conquering Complex and Changing Systems 22

Many-to-Many Associations

Work on **
Mechanics Plane

Bernd Bruegge & Allen Dutoit Object-Oriented Software Engineering: Conquering Complex and Changing Systems 23

Roles in Associations

♦ Client Role:
w An object that can operate upon other objects but that is never operated

upon by other objects.

♦ Server Role:
w An object that never operates upon other objects. It is only operated upon

by other objects.

♦ Agent Role:
w An object that can both operate upon other objects and be operated upon

by other objects. An agent is usually created to do some work on behalf of
an actor or another agent.

Bernd Bruegge & Allen Dutoit Object-Oriented Software Engineering: Conquering Complex and Changing Systems 24

Do UML associations have direction?
w A association between two classes is by default a bi-directional mapping.

t Class A can access class B and class B can access class A

t Both classes play the agent role.

A B

If you want to to make A a client, and B a server, you can make the
association unidirectional. The arrowhead points to the server
role:

Class A (the “client”) accesses class B (“the server”). B is also called
navigable

A B
accesses

Name Direction
Name of association

Association Direction

Bernd Bruegge & Allen Dutoit Object-Oriented Software Engineering: Conquering Complex and Changing Systems 25

Aggregation

♦ Models "part of" hierarchy

♦ Useful for modeling the breakdown of a product into its component
parts (sometimes called bills of materials (BOM) by manufacturers)

♦ UML notation: Like an association but with a small diamond
indicating the assembly end of the relationship.

Bernd Bruegge & Allen Dutoit Object-Oriented Software Engineering: Conquering Complex and Changing Systems 26

weight

Automobile

serial number
year
manufacturer
model
color

drive
purchase

Aggregation

Engine

horsepower
volume

on
off

3,4,5

Wheel

diameter
number of bolts

2,4

Door

open
close

Battery

amps
volts

charge
discharge

*

Brakelight

on
off

Bernd Bruegge & Allen Dutoit Object-Oriented Software Engineering: Conquering Complex and Changing Systems 27

Inheritance

♦ Models "kind of" hierarchy

♦ Powerful notation for sharing similarities among classes while
preserving their differences

♦ UML Notation: An arrow with a triangle
Cell

MuscleCellBloodCell NerveCell

StriateSmoothRed White PyramidalCortical

Bernd Bruegge & Allen Dutoit Object-Oriented Software Engineering: Conquering Complex and Changing Systems 28

Aggregation vs Inheritance

♦ Both associations describe trees (hierarchies)
wAggregation tree describes a-part-of relationships (also called

and-relationship)
w Inheritance tree describes "kind-of" relationships (also called

or-relationship)

♦ Aggregation relates instances (involves two or more
different objects)

♦ Inheritance relates classes (a way to structure the
description of a single object)

Bernd Bruegge & Allen Dutoit Object-Oriented Software Engineering: Conquering Complex and Changing Systems 29

Other Associations

♦ Uses:
w A subsystem uses another subsystem (System Design)

♦ Contains:
w Sometimes called “spatial aggregation”

w ... contains ...
w Example: A UML package contains another UML package

♦ Parent/child relationship:
w ... is father of ...
w ... is mother of ...

♦ Seniority:
w ... is older than ...
w ... is more experienced than ...

Bernd Bruegge & Allen Dutoit Object-Oriented Software Engineering: Conquering Complex and Changing Systems 30

Odds and Ends

♦ Hoererschein for the book:
w Participating Bookstores: If you say you are taking this class, you get 10%

off at:
t Buchladen am Obelisk (Barerstrasse),

t Kanzler (Gabelsbergerstrasse),

t Lachner (Theresienstrasse)

♦ Solution to last exercise

♦ Finding a superclass

Bernd Bruegge & Allen Dutoit Object-Oriented Software Engineering: Conquering Complex and Changing Systems 31

Object Types11/2/00

♦ Entity Objects
w Represent the persistent information tracked by the system (Application

domain objects, “Business objects”)

♦ Boundary Objects
w Represent the interaction between the user and the system

♦ Control Objects:
w Represent the control tasks performed by the system

♦ Having three types of objects leads to models that are more resilient
to change.
w The boundary of a system changes more likely than the control

w The control of the system change more likely than the application domain

♦ Object types originated in Smalltalk:
w Model, View, Controller (MVC) => Observer Pattern

Bernd Bruegge & Allen Dutoit Object-Oriented Software Engineering: Conquering Complex and Changing Systems 32

Example: 2BWatch Objects

♦ UML provides several mechanisms to extend the language

♦ UML provides the stereotype mechanism to present new modeling
elements

<<entity>>
Year

<<entity>>
Month

<<entity>>
Day

<<control>>
ChangeDateControl

<<boundary>>
LCDDisplayBoundary

<<boundary>>
ButtonBoundary

Bernd Bruegge & Allen Dutoit Object-Oriented Software Engineering: Conquering Complex and Changing Systems 33

Roles

♦ A role name is the name that uniquely identifies one end of an
association.

♦ A role name is written next to the association line near the class that
plays the role.

♦ When do you use role names?
w Necessary for associations between two objects of the same class
w Also useful to distinguish between two associations between the same pair

of classes

♦ When do you not use role names?
w If there is only a single association between a pair of distinct classes, the

names of the classes serve as good role names

Bernd Bruegge & Allen Dutoit Object-Oriented Software Engineering: Conquering Complex and Changing Systems 34

Example of Role

Problem Statement : A person assumes the role of repairer
with respect to another person, who assumes the role of
inspector with respect to the first person.

Person
* Creates Workorders

inspector

repairperson
* Creates Workorders

Person Person

Person

Bernd Bruegge & Allen Dutoit Object-Oriented Software Engineering: Conquering Complex and Changing Systems 35

Qualification

♦ The qualifier improves the information about the multiplicity of the
association between the classes.

♦ It is used for reducing 1-to-many multiplicity to 1-1 multiplicity

With qualification: A directory has many files, each with a unique name

Without qualification: A directory has many files. A file belongs only to one
directory.

Directory Filefilename

Directory
File

filename

1 *

0..11

Bernd Bruegge & Allen Dutoit Object-Oriented Software Engineering: Conquering Complex and Changing Systems 36

Example

Problem Statement : A stock exchange lists many companies.
However , a stock exchange lists only one company with a
given ticker symbol. A company may be listed on many stock
exchanges, possibly with different ticker symbols.
Find company with ticker symbol AAPL, DCX.

StockExchange
Company

tickerSym

* *lists

Bernd Bruegge & Allen Dutoit Object-Oriented Software Engineering: Conquering Complex and Changing Systems 37

StockExchange
Company

tickerSym

* *

Use of Qualification reduces multiplicity

StockExchange CompanytickerSym 0..11

Bernd Bruegge & Allen Dutoit Object-Oriented Software Engineering: Conquering Complex and Changing Systems 38

How do you find classes?

♦ Learn about problem domain: Observe your client

♦ Apply general world knowledge and intuition

♦ Take the flow of events and find participating objects in use cases

♦ Apply design patterns

♦ Try to establish a taxonomy

♦ Do a textual analysis of scenario or flow of events (Abbott Textual
Analysis, 1983)

♦ Nouns are good candidates for classes

Bernd Bruegge & Allen Dutoit Object-Oriented Software Engineering: Conquering Complex and Changing Systems 39

Mapping parts of speech to object model components
[Abbot 1983]

 Part of speech Model component Example

 Proper noun object Jim Smith

 Improper noun class Toy, doll

 Doing verb method Buy, recommend

 being verb inheritance is-a (kind-of)

 having verb aggregation has an

 modal verb constraint must be

 adjective attribute 3 years old

 transitive verb method enter

 intransitive verb method (event) depends on

Bernd Bruegge & Allen Dutoit Object-Oriented Software Engineering: Conquering Complex and Changing Systems 40

Example: Scenario from Problem Statement

♦ Jim Smith enters a store with the intention of buying a toy for his 3
year old child.

♦ Help must be available within less than one minute.

♦ The store owner gives advice to the customer. The advice depends on
the age range of the child and the attributes of the toy.

♦ Jim selects a dangerous toy which is unsuitable for the child.

♦ The store owner recommends a more yellow doll.

Bernd Bruegge & Allen Dutoit Object-Oriented Software Engineering: Conquering Complex and Changing Systems 41

Object Modeling in Practice: Class Identification

Foo

Balance

CustomerId

Deposit()
Withdraw()
GetBalance()

Class Identification: Name of Class, Attributes and Methods

Bernd Bruegge & Allen Dutoit Object-Oriented Software Engineering: Conquering Complex and Changing Systems 42

Object Modeling in Practice:
Encourage Brainstorming

Foo

Balance

CustomerId

Deposit()
Withdraw()
GetBalance()

Account

Balance

CustomerId

Deposit()
Withdraw()
GetBalance()

Naming is important!

“Dada”

Balance

CustomerId

Deposit()
Withdraw()
GetBalance()

Bernd Bruegge & Allen Dutoit Object-Oriented Software Engineering: Conquering Complex and Changing Systems 43

Object Modeling in Practice

Account

Balance

Deposit()
Withdraw()
GetBalance()

Customer

Name

CustomerId

Find New Objects

CustomerIdAccountId

Iterate on Names, Attributes and Methods

Bank

Name

Bernd Bruegge & Allen Dutoit Object-Oriented Software Engineering: Conquering Complex and Changing Systems 44

Object Modeling in Practice: A Banking System

Account

Balance

Deposit()
Withdraw()
GetBalance()

Customer

Name

CustomerId

CustomerIdAccountId
AccountIdBank

Name

Find New Objects

Iterate on Names, Attributes and Methods

Find Associations between Objects

Has

Label the assocations

Determine the multiplicity of the assocations

*

Bernd Bruegge & Allen Dutoit Object-Oriented Software Engineering: Conquering Complex and Changing Systems 45

Object Modeling in Practice: Categorize!

Savings
Account

Withdraw()

Checking
Account

Withdraw()

Mortgage
Account

Withdraw()

Customer

Name

CustomerId

Account

Amount

Deposit()
Withdraw()
GetBalance()

CustomerIdAccountId
AccountId

Bank

Name Has**

Bernd Bruegge & Allen Dutoit Object-Oriented Software Engineering: Conquering Complex and Changing Systems 46

Avoid Ravioli Models

Customer

Name

CustomerId

Account

Amount

Deposit()
Withdraw()
GetBalance()

CustomerIdAccountId
AccountId

Bank

Name Has**

Don’t put too many classes into the same package:
7+-2 (or even 5+-2)

Don’t put too many classes into the same package:
7+-2 (or even 5+-2)

Bernd Bruegge & Allen Dutoit Object-Oriented Software Engineering: Conquering Complex and Changing Systems 47

Avoid Ravioli Models: Put Taxonomies in a separate View

Savings
Account

Withdraw()

Checking
Account

Withdraw()

Mortgage
Account

Withdraw()

Account

Amount

Deposit()
Withdraw()
GetBalance()

CustomerIdAccountId
AccountId

Bernd Bruegge & Allen Dutoit Object-Oriented Software Engineering: Conquering Complex and Changing Systems 48

Object Modeling in Practice: Heuristics

♦ Explicitly schedule a team meeting for object identification

♦ Try to differentiate between entity, boundary and control objects

♦ Find associations and their multiplicity
w Unusual multiplicities usually lead to new objects or categories

♦ Identify Aggregation

♦ Identify Inheritance: Look for a Taxonomy, Categorize

♦ Allow time for brainstorming , Iterate, iterate

Bernd Bruegge & Allen Dutoit Object-Oriented Software Engineering: Conquering Complex and Changing Systems 49

Software Engineers are not the only System Analysts

Ontology
Object and System boundary identification

Phenomenology
Objects are user defined

Idealism

Naive Idealism
Objects exist only in my

imagination. If I close my eyes, they
don't exist (Berkeley)

Critical Idealism
Reality is determined by

our ideas
(Kant, Hegel,
Schopenhauer)

Materialism

Marx
Ideas are determined

by the economic
reality

Dialectism
Ideas are determined by the
dialog between the user and

reality
(Sokrates, Hegel, Marx)

Kant
Ideas are made up by humans
"Ding an sich" :Reason for
perception but can never be

seen itself

Schopenhauer

Realism

Naive Realism
Things are exactly
how we experience

them

Plato
Reality can never be
seen only its shadow.

Religion

David Hume

Goethe

Dualistic Idealism Monistic Idealism

Steiner

Bernd Bruegge & Allen Dutoit Object-Oriented Software Engineering: Conquering Complex and Changing Systems 50

What is a Software Engineer?

♦ From the point of view of phenomenology, Software
Engineers are dialectic monistic idealists:
w Idealists:

t They accept that ideas (called requirements or “customer’s wishlist”)
are different from reality.

t The reality might not yet exist (“Vaporware is always possible ”)

wThey are monistic:
t They are optimistic that their ideas can describe reality.

wDialectic:
t They do this in a dialogue with the customer

Bernd Bruegge & Allen Dutoit Object-Oriented Software Engineering: Conquering Complex and Changing Systems 51

Summary

In this lecture, we reviewed the construction of the object model from
use case model. In particular, we described:

♦ Identification of objects

♦ Refinement of objects with attributes and operations

♦ Generalization of concrete classes

♦ Identification of associations

♦ Reduction of multiplicity using qualification.

In the next lecture, we describe the construction of the dynamic model
from the use case and object models.

Bernd Bruegge & Allen Dutoit Object-Oriented Software Engineering: Conquering Complex and Changing Systems 52

5.6 Consider the object model below (adapted from [Jackson, 1995]):

Given your knowledge of the Gregorian calendar, list all the problems
with this model. Modify it to correct each of them.

Exercises

Year

Month

Week

Day

Bernd Bruegge & Allen Dutoit Object-Oriented Software Engineering: Conquering Complex and Changing Systems 53

Exercises (cont’d)

5.7 Consider the object model of the previous exercise. Using
association multiplicity only, can you modify the model such that a
developer unfamiliar with the Gregorian calendar could deduce the
number of days in each month? Identify additional classes if
necessary.

Bernd Bruegge & Allen Dutoit Object-Oriented Software Engineering: Conquering Complex and Changing Systems 54

Next Steps

♦ For all students:
w Tomorrow: Requirements Elicitation Tutorial (REQ/QOC)
w Next Thursday: Configuration Management

w Next Friday: TogetherJ Tutorial

♦ For STARS students:
w GUI Mockup due tomorrow on Notes Bboard

t 2-3 slides + name of presenter for each team

w GUI Mockup review on Monday 14:15

