
C
on

qu
er

in
g

C
om

pl
ex

 a
nd

 C
ha

ng
in

g
Sy

st
em

s
O

bj
ec

t-
O

ri
en

te
d

So
ft

w
ar

e
E

ng
in

ee
ri

ng
Chapter 12,
Software Life Cycle

Bernd Bruegge & Allen Dutoit Object-Oriented Software Engineering: Conquering Complex and Changing Systems 2

Outline

♦ Software Life Cycle
w Waterfall model and its problems

t Pure Waterfall Model

t V-Model

t Sawtooth Model

w Alternative process models
t Boehm’s Spiral Model

t Issue-based Development Model (Concurrent Development)

♦ Process Maturity

Bernd Bruegge & Allen Dutoit Object-Oriented Software Engineering: Conquering Complex and Changing Systems 3

Inherent Problems with Software Development
♦ Requirements are complex
w The client usually does not know all the functional requirements

in advance

♦ Requirements may be changing
w Technology enablers introduce new possibilities to deal with

nonfunctional requirements

♦ Frequent changes are difficult to manage
w Identifying milestones and cost estimation is difficult

♦ There is more than one software system
w New system must often be backward compatible with existing

system (“legacy system”)

w Phased development: Need to distinguish between the system
under development and already released systems

Bernd Bruegge & Allen Dutoit Object-Oriented Software Engineering: Conquering Complex and Changing Systems 4

Definitions

♦ Software lifecycle modeling: Attempt to deal with complexity
and change

♦ Software lifecycle:
w Set of activities and their relationships to each other to support the

development of a software system

♦ Software development methodology:
w A collection of techniques for building models - applied across the

software lifecycle

Bernd Bruegge & Allen Dutoit Object-Oriented Software Engineering: Conquering Complex and Changing Systems 5

Software Life Cycle

♦ Software construction goes through a progression of states

DevelopmentDevelopment
Post-

Development
Pre-

Development

Conception ChildhoodChildhood Adulthood Retirement

Bernd Bruegge & Allen Dutoit Object-Oriented Software Engineering: Conquering Complex and Changing Systems 6

Typical Software Lifecycle Questions

♦ Which activities should I select for the software
project?

♦ What are the dependencies between activities?
wDoes system design depend on analysis? Does

analysis depend on design?

♦ How should I schedule the activities?
w Should analysis precede design?
wCan analysis and design be done in parallel?
w Should they be done iteratively?

Bernd Bruegge & Allen Dutoit Object-Oriented Software Engineering: Conquering Complex and Changing Systems 7

Possible Identification of Software Development Activities

Requirements Analysis What is the problem?

System Design What is the solution?

Program Design
What are the mechanisms
that best implement the
solution?

Program Implementation
How is the solution
constructed?

Testing Is the problem solved?

Delivery Can the customer use the solution?

Maintenance Are enhancements needed?

Problem
Domain

Problem
Domain

Implementation
Domain

Implementation
Domain

Bernd Bruegge & Allen Dutoit Object-Oriented Software Engineering: Conquering Complex and Changing Systems 8

Alternative Identification of Software Development
Activities

Problem
Domain

Implementation
Domain

Requirements Analysis What is the problem?

System Design What is the solution?

Object Design What is the solution in the context
of an existing hardware system?

Implementation How is the solution constructed?

Bernd Bruegge & Allen Dutoit Object-Oriented Software Engineering: Conquering Complex and Changing Systems 9

Software Development as Application Domain: A Use
Case Model

<<include>>

<<include>>
<<include>>

Client End userDeveloperProject manager

Software development

System developmentProblem definition System operation

Administrator

Bernd Bruegge & Allen Dutoit Object-Oriented Software Engineering: Conquering Complex and Changing Systems 10

Software Development as Application Domain:
Simple Object Model

Object Design
Document

Requirements Analysis
Document

Executable system

Problem Statement

Software Development

System Design
Document

Test Manual

Bernd Bruegge & Allen Dutoit Object-Oriented Software Engineering: Conquering Complex and Changing Systems 11

Object Model of the Software Life Cycle

Process group

Activity

Work Product

Resource

Task

Process

Money

Time

Participant

produces

consumes

Phase

*

*

*
*

*

Software life cycle

*

Bernd Bruegge & Allen Dutoit Object-Oriented Software Engineering: Conquering Complex and Changing Systems 12

IEEE Std 1074: Standard for Software
Lifecycle

IEEE Std 1074IEEE Std 1074

Project
Management

Project
Management

Pre-
Development

Pre-
Development

Develop-
ment

Develop-
ment

Post-
Development

Post-
Development

Cross-
Development

(Integral Processes)

Cross-
Development

(Integral Processes)

> Project Initiation
>Project Monitoring
 &Control
> Software Quality
 Management

> Concept
 Exploration
> System
 Allocation

> Requirements
 Analysis
> Design
> Implemen-
 tation

> Installation
> Operation &
 Support
> Maintenance
> Retirement

> V & V
> Configuration
 Management
> Documen-
 tation
> Training

Process Group

Processes

Bernd Bruegge & Allen Dutoit Object-Oriented Software Engineering: Conquering Complex and Changing Systems 13

Processes, Activities and Tasks

♦ Process Group: Consists of Set of Processes

♦ Process: Consists of Activities

♦ Activity: Consists of sub activities and tasks

Process
Group

Process
Group

ProcessProcess

ActivityActivity

DevelopmentDevelopment

DesignDesign

TaskTask

Design
Database

Design
Database

Make a
Purchase

Recommendation

Make a
Purchase

Recommendation

Bernd Bruegge & Allen Dutoit Object-Oriented Software Engineering: Conquering Complex and Changing Systems 14

Example

♦ The Design Process is part of Development

♦ The Design Process consists of the following
Activities
w Perform Architectural Design
w Design Database (If Applicable)

w Design Interfaces
w Select or Develop Algorithms (If Applicable)

w Perform Detailed Design (= Object Design)

♦ The Design Database Activity has the following Tasks
w Review Relational Databases

w Review Object-Oriented Databases
w Make a Purchase recommendation

w

Bernd Bruegge & Allen Dutoit Object-Oriented Software Engineering: Conquering Complex and Changing Systems 15

Modeling Dependencies in a Software Lifecycle

• Note that the dependency association can mean one of two things:
• Activity B depends on Activity A
• Activity A must temporarily precede Activity B

• Which one is right?

System
operation
activity

System
development
activity

Problem
definition
activity

System
upgrade
activity

Market
creation
activity

System
development
activity

Bernd Bruegge & Allen Dutoit Object-Oriented Software Engineering: Conquering Complex and Changing Systems 16

♦ Many models have been proposed to deal with the problems of
defining activities and associating them with each other

♦ The waterfall model
w First described by Royce in 1970

♦ There seem to be at least as many versions as there are
authorities - perhaps more

Life-Cycle Model: Variations on a Theme

Bernd Bruegge & Allen Dutoit Object-Oriented Software Engineering: Conquering Complex and Changing Systems 17

Requirements
Process

System
Allocation
Process

Project
Initiation
Process

Concept
Exploration

Process

Design
Process

Implementation
Process

Installation
Process

Operation &
Support Process

Verification
& Validation

Process

The Waterfall Model of the
Software Life Cycle

Bernd Bruegge & Allen Dutoit Object-Oriented Software Engineering: Conquering Complex and Changing Systems 18

Problems with Waterfall Model

♦ Managers love waterfall models:
w Nice milestones
w No need to look back (linear system), one activity at a time

w Easy to check progress : 90% coded, 20% tested

♦ Different stakeholders need different abstractions
w => V-Model

♦ Software development is iterative
w During design problems with requirements are identified
w During coding, design and requirement problems are found

w During testing, coding, design& requirement errors are found
w => Spiral Model

♦ System development is a nonlinear activity
w => Issue-Based Model

Bernd Bruegge & Allen Dutoit Object-Oriented Software Engineering: Conquering Complex and Changing Systems 19

V Model: Distinguishes between Development
and Verification Activities

Level of Detail

Project Time

Low

High

Acceptance
Testing

Problem with V-Model:
Client’s Perception is the same as the
Developer’s Perception

Client’s Understanding
Developer’s Understanding

Requirements
Elicitation

Analysis

Design

System
 Testing

Object Design Unit Testing

Integration Testing

Bernd Bruegge & Allen Dutoit Object-Oriented Software Engineering: Conquering Complex and Changing Systems 20

Sawtooth Model Client’s Understanding
Developer’s Understanding

Requirements
Elicitation

Implementation

System
Design

Object
Design

Requirements
Analysis

Unit Test

Prototype
Demonstration 2

Client

Developer

Client
Acceptance

System
Integration

& Test

Integration
& Test

Prototype
Demonstration 1

Bernd Bruegge & Allen Dutoit Object-Oriented Software Engineering: Conquering Complex and Changing Systems 21

Sharktooth Model
User’s Understanding

System
Requirements
Elicitation

Implementation

System
Design

Object
Design

Requirements
Analysis

Unit
Test

Prototype
Demo 1

Prototype
Demo 2

Client

Manager

Developer

Design
Review

Client
Acceptance

System
Integration

& Test

Component
Integration

& Test

Manager’s Understanding
Developer’s Understanding

Bernd Bruegge & Allen Dutoit Object-Oriented Software Engineering: Conquering Complex and Changing Systems 22

Problems with V Model

♦ The V model and its variants do not distinguish temporal and
logical dependencies, but fold them into one type of association

♦ In particular, the V model does not model iteration

Bernd Bruegge & Allen Dutoit Object-Oriented Software Engineering: Conquering Complex and Changing Systems 23

♦ Identify risks

♦ Assign priorities to risks

♦ Develop a series of prototypes for the identified risks starting
with the highest risk.

♦ Use a waterfall model for each prototype development
(“cycle”)

♦ If a risk has successfully been resolved, evaluate the results of
the “cycle” and plan the next round

♦ If a certain risk cannot be resolved, terminate the project
immediately

Spiral Model (Boehm) Deals with Iteration

Bernd Bruegge & Allen Dutoit Object-Oriented Software Engineering: Conquering Complex and Changing Systems 24

Spiral Model

Determine objectives,
alternatives, & constraints

Evaluate alternatives,
identify & resolve risks

Develop & verify
next level productPlan next phase

Requirements

Development

Integration

plan

plan

plan

Requirements

Design

validation

validation

Software System
Product

Risk
analysis

Risk
analysis

Prototype1
Prototype2

Prototype3

Risk
analysis

Concept of
operation

Requirements
Design

Code

Unit Test

Integration & Test
Acceptance

Detailed
Design

P1

P2

Test

Bernd Bruegge & Allen Dutoit Object-Oriented Software Engineering: Conquering Complex and Changing Systems 25

Activities (“Rounds”) in Boehm’s Spiral Model

♦ Concept of Operations

♦ Software Requirements

♦ Software Product Design

♦ Detailed Design

♦ Code

♦ Unit Test

♦ Integration and Test

♦ Acceptance Test

♦ Implementation

♦ For each cycle go through
these steps
w Define objectives, alternatives,

constraints

w Evaluate alternative, identify
and resolve risks

w Develop, verify prototype

w Plan next “cycle”

Bernd Bruegge & Allen Dutoit Object-Oriented Software Engineering: Conquering Complex and Changing Systems 26

Determine objectives,
alternatives, & constraints

Evaluate alternatives,
identify & resolve risks

Develop & verify
next level productPlan next phase

Requirements

Development

Integration

plan

plan

plan

Requirements

Design

validation

validation

Software System
Product

Risk
analysis

Risk
analysis

Prototype1
Prototype2

Prototype3

Risk
analysis

Concept of
operation

Requirements
Design

Code

Unit Test

Integration & Test
Acceptance

Detailed
Design

P1

P2

Test

Determine Objectives, Alternatives and Constraints

Project
Start

Project
Start

Bernd Bruegge & Allen Dutoit Object-Oriented Software Engineering: Conquering Complex and Changing Systems 27

Determine objectives,
alternatives, & constraints

Evaluate alternatives,
identify & resolve risks

Develop & verify
next level productPlan next phase

Requirements

Development

Integration

plan

plan

plan

Requirements

Design

validation

validation

Software System
Product

Risk
analysis

Risk
analysis

Prototype1
Prototype2

Prototype3

Risk
analysis

Concept of
operation

Requirements
Design

Code

Unit Test

Integration & Test
Acceptance

Detailed
Design

P1

P2

Test

Evaluate Alternatives, Identify, resolve risks

Build
Prototype

Build
Prototype

Bernd Bruegge & Allen Dutoit Object-Oriented Software Engineering: Conquering Complex and Changing Systems 28

Determine objectives,
alternatives, & constraints

Evaluate alternatives,
identify & resolve risks

Develop & verify
next level productPlan next phase

Requirements

Development

Integration

plan

plan

plan

Requirements

Design

validation

validation

Software System
Product

Risk
analysis

Risk
analysis

Prototype1
Prototype2

Prototype3

Risk
analysis

Concept of
operation

Requirements
Design

Code

Unit Test

Integration & Test
Acceptance

Detailed
Design

P1

P2

Test

Develop & Verify Product

Concept of Operation
Activity

Concept of Operation
Activity

Bernd Bruegge & Allen Dutoit Object-Oriented Software Engineering: Conquering Complex and Changing Systems 29

Determine objectives,
alternatives, & constraints

Evaluate alternatives,
identify & resolve risks

Develop & verify
next level productPlan next phase

Requirements

Development

Integration

plan

plan

plan

Requirements

Design

validation

validation

Software System
Product

Risk
analysis

Risk
analysis

Prototype1
Prototype2

Prototype3

Risk
analysis

Concept of
operation

Requirements
Design

Code

Unit Test

Integration & Test
Acceptance

Detailed
Design

P1

P2

Test

Prepare for Next Activity

Lifecycle Modeling
Process

Lifecycle Modeling
Process

Bernd Bruegge & Allen Dutoit Object-Oriented Software Engineering: Conquering Complex and Changing Systems 30

Determine objectives,
alternatives, & constraints

Evaluate alternatives,
identify & resolve risks

Develop & verify
next level productPlan next phase

Requirements

Development

Integration

plan

plan

plan

Requirements

Design

validation

validation

Software System
Product

Risk
analysis

Risk
analysis

Prototype1
Prototype2

Prototype3

Risk
analysis

Concept of
operation

Requirements
Design

Code

Unit Test

Integration & Test
Acceptance

Detailed
Design

P1

P2

Test

Start of Software Requirements Activity

Start
of Round 2

Bernd Bruegge & Allen Dutoit Object-Oriented Software Engineering: Conquering Complex and Changing Systems 31

♦ Illustrative Prototype
w Develop the user interface with a set of storyboards

w Implement them on a napkin or with a user interface builder
(Visual C++,)

w Good for first dialog with client

♦ Functional Prototype
w Implement and deliver an operational system with minimum

functionality
w Then add more functionality

w Order identified by risk

♦ Exploratory Prototype ("Hacking")
w Implement part of the system to learn more about the requirements.

w Good for paradigm breaks

Types of Prototypes used in the Spiral Model

Bernd Bruegge & Allen Dutoit Object-Oriented Software Engineering: Conquering Complex and Changing Systems 32

♦ Revolutionary Prototyping
w Also called specification prototyping

w Get user experience with a throwaway version to get the
requirements right, then build the whole system
t Disadvantage: Users may have to accept that features in the prototype

are expensive to implement

t User may be disappointed when some of the functionality and user
interface evaporates because it can not be made available in the
implementation environment

♦ Evolutionary Prototyping
w The prototype is used as the basis for the implementation of the

final system

w Advantage: Short time to market
w Disadvantage: Can be used only if target system can be constructed

in prototyping language

Types of Prototyping (Continued)

Bernd Bruegge & Allen Dutoit Object-Oriented Software Engineering: Conquering Complex and Changing Systems 33

Prototyping vs Rapid Development

♦ Revolutionary prototyping is sometimes called rapid
prototyping

♦ Rapid Prototyping is not a good term because it confuses
prototyping with rapid development

w Prototyping is a technical issue: It is a particular model in
the life cycle process
wRapid development is a management issue. It is a

particular way to control a project
♦ Prototyping can go on forever if it is not restricted

t “Time-boxed” prototyping

Bernd Bruegge & Allen Dutoit Object-Oriented Software Engineering: Conquering Complex and Changing Systems 34

The Limitations of the Waterfall and Spiral Models

♦ Neither of these model deals well with frequent change
w The Waterfall model assume that once you are done with a phase,

all issues covered in that phase are closed and cannot be reopened

w The Spiral model can deal with change between phases, but once
inside a phase, no change is allowed

♦ What do you do if change is happening more frequently? (“The
only constant is the change”)

Bernd Bruegge & Allen Dutoit Object-Oriented Software Engineering: Conquering Complex and Changing Systems 35

An Alternative: Issue-Based Development

♦ A system is described as a collection of issues
w Issues are either closed or open

w Closed issues have a resolution
w Closed issues can be reopened (Iteration!)

♦ The set of closed issues is the basis of the system model

I1:Open

I2:Closed I3:Closed

A.I1:Open

A.I2:Open

SD.I1:Closed

SD.I2:Closed

SD.I3:Closed

Planning Requirements Analysis System Design

Bernd Bruegge & Allen Dutoit Object-Oriented Software Engineering: Conquering Complex and Changing Systems 36

Frequency Change and Software Lifeycle

w PT = Project Time, MTBC = Mean Time Between Change
w Change rarely occurs (MTBC >> PT):

t Waterfall Model

t All issues in one phase are closed before proceeding to the next phase

w Change occurs sometimes (MTBC = PT):
t Boehm’s Spiral Model

t Change occuring during a phase might lead to an iteration of a
previous phase or cancellation of the project

w “Change is constant” (MTBC << PT):
t Issue-based Development (Concurrent Development Model)

t Phases are never finished, they all run in parallel

–Decision when to close an issue is up to
management

–The set of closed issues form the basis for the
system to be developed

Bernd Bruegge & Allen Dutoit Object-Oriented Software Engineering: Conquering Complex and Changing Systems 37

Waterfall Model: Analysis Phase

I1:Open

I2:Open I3:Open

A.I1:Open

A.I2:Open

SD.I1:Open

SD.I2:Open

SD.I3:OpenAnalysisAnalysisAnalysis

Bernd Bruegge & Allen Dutoit Object-Oriented Software Engineering: Conquering Complex and Changing Systems 38

Waterfall Model: Design Phase

I1:Closed

I2:Closed I3:Open

A.I1:Open

A.I2:Open

SD.I1:Open

SD.I2:Open

SD.I3:OpenAnalysis

DesignDesign

AnalysisAnalysis

Bernd Bruegge & Allen Dutoit Object-Oriented Software Engineering: Conquering Complex and Changing Systems 39

Waterfall Model: Implementation Phase

I1:Closed

I2:Closed I3:Closed

A.I1:Closed

A.I2:Closed

SD.I1:Open

SD.I2:Open

SD.I3:Open

ImplementationImplementation

DesignDesign

AnalysisAnalysis

Bernd Bruegge & Allen Dutoit Object-Oriented Software Engineering: Conquering Complex and Changing Systems 40

Waterfall Model: Project is Done

I1:Closed

I2:Closed I3:Closed

A.I1:Closed

A.I2:Closed

SD.I1:Open

SD.I2:Open

SD.I3:Open

ImplementationImplementation

DesignDesign

AnalysisAnalysis

Bernd Bruegge & Allen Dutoit Object-Oriented Software Engineering: Conquering Complex and Changing Systems 41

Issue-Based Model: Analysis Phase

I1:Open

I2:Open I3:Open

A.I1:Open

A.I2:Open

SD.I1:Open

SD.I2:Open

SD.I3:Open

Analysis:80%Analysis:80%

Design: 10%Design: 10%

Implemen-
tation: 10%
Implemen-
tation: 10%

Bernd Bruegge & Allen Dutoit Object-Oriented Software Engineering: Conquering Complex and Changing Systems 42

Issue-Based Model: Design Phase

I1:Closed

I2:Closed I3:Open

A.I1:Open

A.I2:Open

SD.I1:Open

SD.I2:Open

SD.I3:Open

Analysis:40%Analysis:40%

Design: 60%Design: 60%

Implemen-
tation: 0%
Implemen-
tation: 0%

Bernd Bruegge & Allen Dutoit Object-Oriented Software Engineering: Conquering Complex and Changing Systems 43

Issue-Based Model: Implementation Phase

I1:Open

I2:Closed I3:Closed

A.I1:Open

A.I2:Closed

SD.I1:Open

SD.I2:Cosed

SD.I3:Open

Analysis:10%Analysis:10%

Design: 10%Design: 10%

Implemen-
tation: 60%
Implemen-
tation: 60%

Bernd Bruegge & Allen Dutoit Object-Oriented Software Engineering: Conquering Complex and Changing Systems 44

Issue-Based Model: Project is Done

I1:Closed

I2:Closed I3:Closed

A.I1:Closed

A.I2:Closed

SD.I1:Closed

SD.I2:Closed

SD.I3:Closed

Analysis:0%Analysis:0%

Design: 0%Design: 0%

Implemen-
tation: 0%
Implemen-
tation: 0%

Bernd Bruegge & Allen Dutoit Object-Oriented Software Engineering: Conquering Complex and Changing Systems 45

Process Maturity

♦ A software development process is mature if the development
activities are well defined and if management has some control
over the management of the project

♦ Process maturity is described with a set of maturity levels and
the associated measurements (metrics) to manage the process

♦ Assumption: With increasing maturity the risk of project failure
decreases.

Bernd Bruegge & Allen Dutoit Object-Oriented Software Engineering: Conquering Complex and Changing Systems 46

Capability maturity levels

1. Initial Level
w also called ad hoc or chaotic

2. Repeatable Level
w Process depends on individuals ("champions")

3. Defined Level
w Process is institutionalized (sanctioned by management)

4. Managed Level
w Activities are measured and provide feedback for resource

allocation (process itself does not change)

5. Optimizing Level
w Process allows feedback of information to change process itself

Bernd Bruegge & Allen Dutoit Object-Oriented Software Engineering: Conquering Complex and Changing Systems 47

Summary

♦ A Software Life Cycle Model is a representation of the
development process (as opposed to the system).

♦ Reviewed software life cycles
w Waterfall model

w V-Model
w Sawtooth Model

w Boehm’s Spiral Model
w Issue-based Development Model (Concurrent Development)

♦ The maturity of a development process can be assessed using a
process maturity model, such as the SEI’s CMM.

