Software Life Cycle

Bernd Bruegge
Department of Computer Science
Carnegie Mellon University
5 October 1999

e
e o o o o o o e o ecvosssvososos osomoFommssmmomoPpmonp oo

Outline of Lecture

« Software Life cycle

Waterfall model and its problems
+ Pure Waterfall Model
+ V-Model
+ Sawtooth Model
Alternative process models
+ Boehm’s Spiral Model
¢ Issue-based Development Model (Concurrent Development)

« Software Development Activities
« Software Development Roles

Bernd Bruegge Software Engineering

Hit

Odds and Ends

« The client is not responding. What is going on?

<+ We are approaching system design. Managerial and
technical challenges

« Major issues in managing system design
— The initial subsystem decomposition is usually wrong

— The planned design window for technology enablers is
usually wrong

« Two phenonema

« Some of the initial subsystems don’t have enough “meat” =>
a Subsystem merger

mportant subsystems have been overlooked => |€@ntification
of new subsystems -

*Orphan Object

“Leftover team

Syndrome”

Syndrome”

Bernd Bruegge Software Engineering #Ht

The leftover team syndrome

« Two subsystems are merged (collapsed) into one

« However, the team structure stays the same
Too much organizational effort to redo the team organization

« STARS example:

The appearance of the maintenance subsystem from the
rubble of inspection and repair subsystems

Inspection and repair team organization stays

Bernd Bruegge Software Engineering

Hit

Analysis Review leads to a Revision of the
System Design (new Subsystem
Decomposition)

Repair
Subsystem
\
Inspector Repair()
Inspection
~_ Repai r Subsystem

Mechanic Inspect()

\

Maintenance
Subsystem

Inspect()
Repair()

Bernd Bruegge Software Engineering

Questions to be answered by the Project
Manager

< Who is responsible for the new subsystem?

» How can the labor be assigned?

< Should there be a new team “Maintenance”
» What happens to “Inspection” and “Repair?
< Should we keep the old organization chart?

< Should there be one large team meeting, or shall we continue with two
team meetings?

< Should we schedule additional team meetings?
< Should there be one or two API liaisons?

Bernd Bruegge Software Engineering

Hit

The Orphan subsystem syndrome

< A new subsystem Is appearing

< Who is responsible for the formulation of the use

cases, for the identification of objects, who will
Implement it?

«+ STARS example:

Work order seem more and more to be a central issue In
STARS?

Who is responsible for Workorder?

How extensible to we have to model Work Orders?

+ Management says, “Forget work orders for now, let’s do it in the
next iteration”. Can we afford to be so sloppy?

Bernd Bruegge Software Engineering

Hit

Workorder in STARS

« Keep it simple

« ldentify different beasts in the zoo
(Emergency Workorder, Scheduled Workorder,
Preventive Workorder, Condition-Based Workorder)

« Establish a taxonomy with a superclass
« Concentrate on one subclass for the project

« Implement rudimentary methods for Dropping and
Extracting Tasks into the Workorder

« Don’t do a calendar object

Bernd Bruegge Software Engineering

Hit

The shrinking design window syndrome

« Design window

The time interval after which design issues have to be
resolved

« Products are promised but don’t materialize
The product turns out to be too complex
The product turns out to be useless
A critical subsystem provider goes bankrupt.

< Issues:

How long can we stretch the design window?
Buy or build?

+ Pros of building software

+ Cons of building software

How can we get buy without not building when the design
window is closed but nothing got delivered?

Bernd Bruegge Software Engineering

Hit

Modeling WorkOrders

Inspector: Maintenance
Subsystem

Inspect()
Repair()

Creates

Bernd Bruegge

Mechanic: Maintenance

Subsystem

Inspect()
Repair()

WorkOrder

DropWork()
LookupWork()

Software Engineering

Reads

Hit

Manager Questions?

« Should Workorder be a Subsystem or only a class?

« Should the creation of Workorders cause a push
notification? Should Workorders be pulled?

« We have been told by the client, that we should not
model a work order system:
What is the simplest scenario that we can concentrate on
during 15-413?
« Use a observer pattern for the work order (patterns are
discussed In the next lectures on system design)

Bernd Bruegge Software Engineering

Hit

Inherent Problems with Software Development

« Requirements are complex

The client usually does not know all the functional
requirements in advance

« Requirements may be changing

Technology enablers introduce new possibilities to deal with
nonfunctional requirements

« Frequent changes are difficult to manage
Identifying milestones and cost estimation is difficult

« There 1s more than one software system

New system must often be backward compatible with
existing system (“legacy system”)

Phased development: Need to distinguish between the
system under development and already released systems

Bernd Bruegge Software Engineering #Ht

Definitions

« Software lifecycle modeling: Attempt to deal with
complexity and change

« Software lifecycle:

Set of activities and their relationships to each other to
support the development of a software system

« Software development methodology:

A collection of techniques for building models - applied
across the software lifecycle

Bernd Bruegge Software Engineering

Hit

Software Life Cycle

« Software construction goes through a progression of
states

Retirement

Post-
Pre- & Development &

Development Development

Conceptio% —| Childhood [—| Adulthood

Bernd Bruegge Software Engineering #Ht

Typical Software Lifecycle Questions

< Which activities should | select for the
software project?

« What are the dependencies between
activities?

Does system design depend on analysis? Does
analysis depend on design?

« How should | schedule the activities?
Should analysis precede design?
Can analysis and design be done in parallel?
Should they be done iteratively?

Bernd Bruegge Software Engineering

Hit

Possible Identification of Software Development

Activities

Requirements Analysis

System Design

Program Design

Program Implementation

Testing

Delivery

Maintenance

Bernd Bruegge

What is the problem?

What is the solution?

Problem
Domain

What are the mechanisms

that best implement the
solution?

How is the solution
constructed?

Is the problem solved?

Implementation
Domain

Can the customer use the solution?

Are enhancements needed?

Software Engineering

Hit

Alternative ldentification of Software
Development Activities

Requirements Analysis

System Design

Object Design

Implementation

Bernd Bruegge

What is the problem?

Problem
Domain

What is the solution?

What is the solution in the context
of an existing hardware system?

Implementation
Domain

How IS the solution constructed?

Software Engineering #Ht

Software Development as Application
Domain: A Use Case Model

>

Sof t war e devel oprrent

<<i ncl ude>> - g \v ~ _ <<incl ude>>
~
~ <<i ncl ude>> ~
Z
Pr obI emdefinition Syst em devel opnent System operati on

N a
P S SR N

Cient Proj ect manager Devel oper Adm ni strat or End user

Bernd Bruegge Software Engineering

Hit

Software Development as Application
Domain: Simple Object Model

<> 15- 413 >
< Software Devel opnent
<> <> Q bj ect Design
Docunent
Probl em SPMP
St at enent
Requi renents Anal ysi s Syst em Desi gn Execut abl e
docunent docunent Test Manual syst em

Bernd Bruegge Software Engineering

General Object Model of the Software
Lifecycle

Bernd Bruegge

Software life cycle

!

Process group

!

Process

Q .

Phase

*

Activity

Wor k Pr oduct

produces

Task

consunes

*

Resour ce

AN

Parti ci pant

Ti me

Software Engineering

Money

Hit

|EEE Std 1074: Standard for Software

Lifecycle

Project
Management

> Project Initiation

>Project Monitoring
&Control

> Software Quality
Management

Bernd Bruegge

IEEE Std 1074

Pre-
Developmen

> Concept
Exploration

> System
Allocation

Process Group

> Requirements
Analysis

> Design

> Implemen-
tation

Processes

Software Engineering

Post-
Development

> Installation

> Operation &
Support

> Maintenance

> Retirement

Development

Cross-

>V &V
> Configuration
Management
> Documen-
tation
> Training

Hit

Processes, Activities and Tasks

« Process Group: Consists of Set of Processes
« Process: Consists of Activities
« Activity: Consists of sub activities and tasks

Process Development
Group

‘ Process r 4{ Design I
Activity Design
Database

Make a
Purchase
Recommendation

‘ Task I~

Bernd Bruegge Software Engineering

Hit

Example

« The Design Process Is part of Development

« The Design Process consists of the following
Activities
Perform Architectural Design
Design Database (If Applicable)
Design Interfaces
Select or Develop Algorithsm (If Applicable)
Perform Detailed Design (= Object Design)

« The Design Database Activity has the following
Tasks

Review Relational Databases
Review Object-Oriented Databases
Make a Purchase recommendation

Bernd Bruegge Software Engineering

Hit

Modeling Dependencies in a Software
Lifecycle

Pr obl em System System
definition devel opnent operation
activity activity activity

System X
devel oprrent
activity 4// Syst em
upgr ade
activity

Mar ket
creation
activity

= Note that the dependency association can mean one of two things:

= Activity B depends on Activity A
= Activity A must temporarily precede Activity B
= Which one is right?

Bernd Bruegge Software Engineering

Hit

Life-Cycle Moddl: Variationson a Theme

« Many models have been proposed to deal with the
problems of defining activities and associating them
with each other

« The waterfall model
First described by Royce in 1970

« There seem to be at least as many versions as there are
authorities - perhaps more

Bernd Bruegge Software Engineering #Ht

The Waterfall Model of the Software Life

Cycle
Requirements Analysig|
and Definition ‘
y
System and .
Software Design ‘
Y
Implementation anc -
Unit Testing ‘
Y

Bernd Bruegge

System Tlesting

Software Engineering

Hit

Problems with Waterfall Model

« Managers love waterfall models:
Nice milestones
No need to look back (linear system), one activity at a time
Easy to check progress : 90% coded, 20% tested

« Different stakeholders need different abstractions
=> V-Model

« Software development is iterative
During design problems with requirements are identified
During coding, design and requirement problems are found
During testing, coding, design& requirement errors are found
=> Spiral Model

« System development is a nonlinear activity
=> |ssue-Based Model

Bernd Bruegge Software Engineering

Hit

V Model: Distinguishes between
Development and Verification Activities

Client’s Understanding

Level of Detall Developer’s Understanding

Requirements WA RANNRARRRURRURRRRRRRRRRPPN A\CCeptarnce
Low Elicitation Testing
Problem with V-Model: '
Client’s Perception is the same as the
Developer’s Perception

System

AnaIyS|S 0000000000000 0000c0000000 Testing

Design SRR 4 Integration Testing

N\ //

Object Design \\/ Unit Testing
High

>
Project Time

Bernd Bruegge Software Engineering

Sawtooth Model

s Client’s Understanding
= [Developer’s Understanding

Pr ot ot Pr ot ot
Requi r enen
Elqc:ltatloDGem)ns”a'or‘D Germnstralona

Cient

Cient
Accept ance

A A

\/

UI rerrents
aI ysi s

(g)

System
Int«!ratlon

est

vel oper

ration

I nte
& “Test

hj ect
Desi gn

Bernd Bruegge

Software Engineering

Hit

“Sharktooth” Model

e |Jser’s Understanding
Manager’s Understanding
Developer’s Understanding

Cient
(stem .
Reqayr enent s Pr[())et ot ylpe Pr[())et ot y2pe cient
NE! i ci tation o o Accept ance
\ A A
Manager
Desi gn System
Revi ew I ntegration
& Test
Requi renment s / Devel oper
i Conponent
alysi s Intggration
& Test

System
Desi gn

oj ect
Desi gn

Uni t
Test

m.

| mpl ement at i OD

Bernd Bruegge

Software Engineering

Hit

Problems with V Model

« The V model and its variants do not distinguish
temporal and logical dependencies, but fold them into
one type of association

« In particular, the V model does not model iteration

Bernd Bruegge Software Engineering

Hit

Bernd Bruegge

Software Engineering

Hit

Spiral Model (Boehm) Deals with Iteration

« ldentify risks
« Assign priorities to risks

« Develop a series of prototypes for the identified risks
starting with the highest risk.

« Use a waterfall model for each prototype development
(“CyCIEH)

« If a risk has successfully been resolved, evaluate the
results of the “cycle” and plan the next round

< If a certain risk cannot be resolved, terminate the
project immediately

Bernd Bruegge Software Engineering

Hit

Spiral Model

:ﬂ-E'1ETI'I"l'E'
s abjeciives,
afernatives,
Constraints

Commitrment

Curmilative

Progress
throwgh
steps

Evaluate alemabtwes,

_‘—__'““-'—-——_.____ identify, resalve ks

Risk |
“analysis

Hawspw o
partition
lite-cycle plan

Plan reat phase

Bernd Bruegge

Requirarments plan |

Integration Design valdation
and lest and verification

| Frototype 1

—

L-oncep of
opsration

nesd-leval product

Software Engineering #Ht

Activities (“Rounds”) in Boehm'’s Spiral

Model

« Concept of Operations

« Software Requirements

< Software Product
Design

« Detailed Design

« Code

« Unit Test

« Integration and Test
<« Acceptance Test

« Implementation

Bernd Bruegge

Software Engineering

« For each cycle go
through these steps

Define objectives,
alternatives, constraints

Evaluate alternative, identify
and resolve risks

Develop, verify prototype
Plan next “cycle”

Hit

Determine Objectives, Alternatives and Constraints

Cumuiative
oSt
.-r"‘_l_""'l-.
Progress
throwgh
sbegas
Evaluate alkemmatees,
-Detarmane _l_'_'_'““-'-—__.____ identify, resolve reks
\ objeciives,
alernatives,

Project
Start

Constraints

‘Risk |
“analysis
| Frototype 1

Commitrment

_—

iy — —
parti Reguirarments plan |
lite-cycle plan Lonce ol

Opsration

rgd-level product

Bernc —

Evaluate Alternatives, Identify, resolve risks

Cumuiative

Cost

T Build
i ey Prototype
steps

Evaluate alkemmatees,
fesolve ks

-Detarmane
\ objeciives,
alernatives,
Cconstraints

"Risk |

‘analysis Crperational
Commitrment | | Prototype 1 Y Prototype 2 | Prototype 3 proiotype
A partiion | A i) Simufahnrﬁ. models, benchrmarks

Reguirarments plan |
lite-cycle plan Londept ol
operation

Plan next phase

Bernc —

rgd-level product

Develop & Verify Product

/mee

Fmgrna
:sl:-t:pﬁ-
Evaluata afemabtwes,
- Detarmane identity, resolve neks
L abjectives,
afernadives,

constraints

Risk |
“analysis
| Frototype 1

Crperational
prointype

Commilment
Hawegw

pariton Requirarments plan |)

lite-cycle plan Comcept ol

b Code

| |
||.i|l'ﬂF
| test |
|

Plan next phase Concept of Operation

Activity

p.
nesd-level product
B¢ -

Hit

Prepare for Next Activity

Cumuiative

Evaluate alkemmatees,

-Detarmane identily, resoive raks
\. objeciives,
afternatives,
constraints
‘Risk |
‘analysis Dperational
. Commitrment | Prototype 1 Y Prototype 2 | Prototype 3 proiotype
e = . + i
ii B T T Sl , mndels., hirmark
sl Reguirarments plan | B uath-;E_ {8 RTINS
Concep of T — e

life-cycla plan

Lifecycle Modeling
Process

Bernc

Opsration

rgd-level product

Start of Software Requirements Activity

Cumuiative
oSt
T
Progress
thrzasgh
5
Start s Evaluats ahematwes,
gictg g identity, resolve nsks
of Round 2 » “ohjectives,
alernatives,

Cconstraints

‘Risk |
“analysis
| Frototype 1

Commilmenl

_—

Hawuw —— —
partion Requirarments plan |
lifa-cyche plan ConCep al

Opsration

nesd-level produc

Bernc —

Types of Prototypes used in the Spiral Model

< lllustrative Prototype
Develop the user interface with a set of storyboards

Implement them on a napkin or with a user interface builder
(Visual C++, ...)

Good for first dialog with client

< Functional Prototype

Implement and deliver an operational system with minimum
functionality

Then add more functionality
Order identified by risk

« Exploratory Prototype (*'"Hacking")

Implement part of the system to learn more about the
requirements.

Good for paradigm breaks

Bernd Bruegge Software Engineering

Hit

Types of Prototyping ctd

« Revolutionary Prototyping
Also called specification prototyping

Get user experience with a throwaway version to get the
requirements right, then build the whole system

+ Disadvantage: Users may have to accept that features in the
prototype are expensive to implement

+ User may be disappointed when some of the functionality and
user interface evaporates because it can not be made available in
the implementation environment

<+ Evolutionary Prototyping

The prototype is used as the basis for the implementation of
the final system

Advantage: Short time to market

Disadvantage: Can be used only if target system can be
constructed in prototyping language

Bernd Bruegge Software Engineering

Hit

Prototyping vs Rapid Development

« Revolutionary prototyping is sometimes called rapid
prototyping

« Rapid Prototyping is not a good term because it
confuses prototyping with rapid development

Prototyping is a technical issue: It is a particular
model in the life cycle process

Rapid development is a management issue. It is a
particular way to control a project

« Prototyping can go on forever if it is not restricted
+ “Time-boxed” prototyping

Bernd Bruegge Software Engineering

Hit

The Limitations of the Waterfall and
Spiral Models

« Neither of these model deals well with
frequent change
The Waterfall model assume that once you are done

with a phase, all issues covered in that phase are
closed and cannot be reopened

The Spiral model can deal with change between
phases, but once inside a phase, no change is
allowed

« What do you do if change is happening more
frequently? (“The only constant is the change”)

Bernd Bruegge Software Engineering

Hit

An Alternative: Issue-Based Development

« A system is described as a collection of issues
— Issues are either closed or open
— Closed issues have a resolution
— Closed issues can be reopened (lteration!)

« The set of closed issues is the basis of the system model

Planning Requirements Analysis System Design

Bernd Bruegge Software Engineering #Ht

Frequency Change and Software Lifeycle

PT = Project Time, MTBC = Mean Time Between Change

Change rarely occurs (MTBC >> PT):
+ Waterfall Model

+ All issues in one phase are closed before proceeding to the next
phase

Change occurs sometimes (MTBC = PT):
+ Boehm’s Spiral Model

+ Change occuring during a phase might lead to an iteration of a
previous phase or cancellation of the project

“Change is constant” (MTBC << PT):
¢ Issue-based Development (Concurrent Development Model)
+ Phases are never finished, they all run in parallel
— Decision when to close an issue is up to management

— The set of closed issues form the basis for the system to be
developed

Bernd Bruegge Software Engineering

Hit

Waterfall Model:

analysis|

Bernd Bruegge

Analysis Phase

A.11:0pen
A.12:0pen
p 7‘

Software Engineering

' SD.12:0pen

SD.11:0pen

SD.13:0pen

Hit

Waterfall Model: Design Phase

A.11:0pen
A.12:0pen
p 7‘

11:Closed

e

\3

o B

SD.11:0Open
SD.13:0pen

Bernd Bruegge Software Engineering #Ht

Waterfall Model: Implementation Phase

11:Closed
A.11:Closed
A.12:Closed
p 7»

SD.11:0Open
SD.13:0pen

' SD.12:0pen

—

Implementation

Bernd Bruegge Software Engineering #Ht

Waterfall Model:

o

Bernd Bruegge

A.11:Closed

~

\3

A.12:Closed

~

\2

—

Project is Done

SD.13:0Open

' SD.12:0pen

Software Engineering

Implementation

Hit

Issue-Based Model: Analysis Phase

A.12:0pen
p 7»

Analysis:80%

SD.13:0pen

SD.12:0pen

Design: 10%

Implemen-
tation: 10%

Bernd Bruegge Software Engineering

Hit

Issue-Based Model: Design Phase

A.l11:Open
< 7‘
A.12:0pen

< VV

11:Closed

Analysis:40%

SD.13:0pen

' SD.12:0pen

Design: 60%

Implemen-
tation: 0%

Bernd Bruegge Software Engineering

Issue-Based Model: Implementation Phase

% 13:Closed

Analysis:10%

Design: 10%

Implemen-
tation: 60%

Bernd Bruegge

ﬂ

A.12:Closed

\2

Software Engineering

T

SD.12:Cosed

SD.11:Open

SD.13:0pen

Hit

Issue-Based Model: Project is Done

11:Closed
K 4 A.11:Closed

A.12:Closed

~

Analysis:0%

SD.11:Open

SD.13:Closed
X SD.12:Closed S
Design: 0% 2.5

Implemen-
tation: 0%

Bernd Bruegge Software Engineering

Process Maturity

« A software development process is
mature If the development activities are
well defined and if management has
some control over the management of the
project

« Process maturity is described with a set
of maturity levels and the associated
measurements (metrics) to manage the
process

« Assumption: With increasing maturity
the risk of project failure decreases.

Bernd Bruegge Software Engineering

Hit

Capability maturity levels

1. Initial Level

also called ad hoc or chaotic
2. Repeatable Level

Process depends on individuals ("champions")
3. Defined Level

Process is institutionalized (sanctioned by
management)

4. Managed Level

Activities are measured and provide feedback for
resource allocation (process itself does not change)

5. Optimizing Level

Process allows feedback of information to change
process itself

Bernd Bruegge Software Engineering

Hit

