
Bruegge/Software 15-413 Software Engineering Fall 1999 1

Object Design

v 8 September 1994

2

Lecture Notes on
Microsoft Practice

Bill Scherlis

15-413 Software Engineering Fall 1999

4 November 1999

Bruegge/Software 15-413 Software Engineering Fall 1999 2

Focus

• Software process
– Milestones

– Documents

– Code

• Other areas
– Measures

– People

– Standards and competition

– Organizational improvement

Bruegge/Software 15-413 Software Engineering Fall 1999 3

Microsoft Software

• Example: Windows 95 (ca. 1996)
– 11 MLOC

– 200 programmers, testers

– One of 250 products

Bruegge/Software 15-413 Software Engineering Fall 1999 4

How Do They Do It?

• Early PC Culture

• Issues
– Scale-up product size, complexity, platforms

– Increasing team size

– Hastening time to market

– Managing quality

• Time to market
– Subscriptions

Bruegge/Software 15-413 Software Engineering Fall 1999 5

The Five Principles (Cusumano and Selby)

• Large projects divided into buffered milestone cycles
– No separate “maintenance” or “post-release”

• Vision statement and feature outline
– No formal specifications

• Features selected and prioritized according to market
– Early and frequent user release, evaluation

• Modular architecture
– Project structure mirrors product structure

• Fix project resources; individuals commit to tasks
– Drive prioritization & schedule without top-down plans

Bruegge/Software 15-413 Software Engineering Fall 1999 6

Synch-and-Stabilize Cycle, 1

• Planning phase (3-12 months)
– Vision

• Based on extensive customer input

• Identify and prioritize features

– Specificaiton
• Feature defn. Architecture. Component interdependencies.

– Schedule and feature teams
• Team: 1 PM, 3-8 developers, 3-8 testers

• Development phase

• Stabilization phase

Bruegge/Software 15-413 Software Engineering Fall 1999 7

Roles

• Product mgmt
– Market research. Marketing plan. Beta sites. Launch.

• Program mgmt
– Vision. Spec. Schedule. Comm. Sign-off.

• Developers
– Design. Develop. Debug. Daily build.

• Usability lab and testers
– Usability goals. Development/internal/field testing.

• Visual interface design
– UI design. Icons and bitmaps. Review.

Bruegge/Software 15-413 Software Engineering Fall 1999 8

Process Models

• Waterfall
Reqts

Design
 Code

 Test

• Iterative / spiral
– Iterate above

– Prototyping cycles

• Overlapped
– Customer in loop

Bruegge/Software 15-413 Software Engineering Fall 1999 9

Synch-and-Stabilize Cycle, 2

• Development phase (6-12 months)
– 3 - 4 sequential subprojects, each with milestone release

• 1. First 1/3 of features: Most critical features. Shared comps.

• 2. Second 1/3 of features.

• 3. Least critical 1/3 of features.

– Continuous testing (tester ↔ developer)

– Milestones (2-4 months each)
• 6-10 weeks: code, opts. Test/debug. Feature stabilize.

• 2-5 weeks: Integration. Testing.

• 2-5 weeks: (buffer time)

– Visual freeze; feature complete; code complete.

• Stabilization phase

Bruegge/Software 15-413 Software Engineering Fall 1999 10

Daily Build, 1

1. Check out
– Make changes, compile,

test in private copies

– Day or several days

2. Implement feature

3. Private release

4. Test private release
– Test the new feature

5. Synch code changes
– Compare (“synch”)

changes with master
source

• A code diff

– Insert diring “frozen”
period -- e.g., after 2pm.

6. Merge code changes
– Use tool: 5-20 minutes

Bruegge/Software 15-413 Software Engineering Fall 1999 11

Daily Build, 2

7. Build private release
– Overnight, new private

release with latest
changes from others

– Build for multiple
platforms

8. Test private release
– Test the new feature

– Morning after 4, 5, 6.

9. Execute quick test
– “Smoke test” of overall

functionality. 30 min.

10. Check in
– Synch and merge, again

(to get latest changes).

– Back out if conflict

11. Generate daily build
– Build Master generates

a build.

– Stable snapshot.

– Compile.

– Automated test.

Bruegge/Software 15-413 Software Engineering Fall 1999 12

Synch-and-Stabilize Cycle, 3

• Stabilization phase
– Internal testing

• Within company: “Dogfood”

– External betas

– “Zero-bug” release

– Release preparation
• “Going gold” -- master media

• Documentation

Bruegge/Software 15-413 Software Engineering Fall 1999 13

Scaling Up

• Parallel teams
– Frequent synchronizations

• Possibly daily

• Debugging

• Always have a product that you can ship
– Including all versions

• Common language

• Continuously test

• Metric data drives milestone completion

Bruegge/Software 15-413 Software Engineering Fall 1999 14

Why (I Think) This Works

• Architecture

• Corporate memory

• Customer

• Code

