L_ecture Notes on
Object Design

Bill Scherlis / Bernd Brligge
15-413 Software Engineering Fall 1999

21 October 1999
2 November 1999

Object Design — The Basis for Implementation

e Object Design
— Add details to requrements analysis
— Make implementation decisions: Build / Buy
— Make implementation decisions: Solution objects

e Design drivers
— Time. Cost. Quality / assurance.
— Features / capability. Performance.
— Future. Product line context.

e Operations in the object model

— Requirements Analysis: Use cases, functional and dynamic models
deliver operations for object model

— Object Design: Iterate on where to put these operations in the
object model

Bruegge/Software 15-413 Software Engineering Fall 1999

Build / Buy

* Buy e Build
— Cost — Avalilability
e Project resources — Risk
* Development time « Control over process

— Market leverage
* Ride growth curves
e Quality

— Adoption cost

Future trajectory
Support: Small vendor
Support: Large vendor
Architectural
Certification

Bruegge/Software 15-413 Software Engineering Fall 1999

Object Design: Closing the Gap
: Syst em : Problem
‘Appl | cation object S: |

_— |

\

‘ Solutionobjects! \ —————— 4‘————-
I
‘ Cust om obj ect s : \ |

\ Object désign gap
= > |
ﬁO‘f-the-sheIf corrponents> —————— *~ - - — -

I
< ~_ System design gap
I

Machine

Bruegge/Software 15-413 Software Engineering Fall 1999

Example Object Design Issues

Full definition of associations
Full definition of classes
Encapsulation of algorithms and data structures

Detection of new application-domain independent classes
(example: Cache)

Optimization

Increase of inheritance
Decision on control
Packaging

ruegge/Software 15-413 Software Engineering Fall 1999

Example Object Design Criteria

Rate of change
— Of requirements
— Of OTS environment

Relatedness within product line
Performance sensitivity

Division of labor, division of expertise
Tolerance for interdependency

Bruegge/Software 15-413 Software Engineering Fall 1999

Object Design Activities

1. Service specification
— Describes precisely each class interface

2. Component selection
— ldentify off-the-shelf components and additional solution objects

3. Object model restructuring

— Transforms the object design model to improve its
understandability and extensibility

4. Object model optimization

— Transforms the object design model to address performance criteria
such as response time or memory utilization.

Bruegge/Software 15-413 Software Engineering Fall 1999 7

Object Design Concepts

Solution Objects
— Objects in the implementation domain

Signatures
— Classes, Interfaces
— Methods, Fields
— Packages

Contracts
— Invariants, Preconditions, Postconditions
— Mechanical attributes

Specification
— UML Object Constraint Language (OCL)

Bruegge/Software 15-413 Software Engineering Fall 1999

Specification — 1

UML Object Constraint Language (OCL)

Context Hashtable 1nv:
numElements >= 0

context Hashtable::put(key, entry) pre:
IcontainsKey(key)

context Hashtable: :put(key, entry) post:
containsKey(key) and
get(key) = entry and
numElements = numElements@pre + 1

Bruegge/Software 15-413 Software Engineering Fall 1999

Specification — 2

o Examples

— Textual description of invariants, preconditions, postconditions.
» Typical: Data invariant for complex types
» Often used in code walkthroughs

— State machine for a class
» Lifetime of an object
* How an object responds to events
e Constraints on class clients: order of method calls, etc

e In general
— Range from informal to formal

e When is formal useful?
— Complex invariants and conditions
— High risk: consequences of error

Bruegge/Software 15-413 Software Engineering Fall 1999

10

1. Service Specification

« Req

uirements analysis

— ldentifies attributes and operations

 without specifying their types or their parameters.

e Object design
— Identify missing attributes, operations
— Specify detalils

Bruegge/Software

la. Type signature information
1b. Visibility information

1c. Contracts

1d. Exceptions

15-413 Software Engineering Fall 1999

11

GIS subsystems

Visualization

N

I
I
I
I
I
I
I
\ 4

\
\

\

\

4 EmissionModeling

GIS

Bruegge/Software

<

Simulation

R Storage

15-413 Software Engineering Fall 1999

12

GIS Object Model: Before

Layer
label
A
[|
RoadLayer WaterLayer PoliticalLayer
L 1] L 1
Highway SecondaryRoad State County
A A A A
River Lake
PolyLine Polygon

Bruegge/Software

15-413 Software Engineering Fall 1999

13

GIS: From System Design to Object Design

» Task specification
e Subsystem model
» Use case: Zoom-the-Map

Bruegge/Software 15-413 Software Engineering Fall 1999

14

GIS Object Model: After

Layer

1abel

A

RoadLayer

WaterLayer

PoliticalLayer

LayerElement

* elements

l1abel

LayerElement(polyline)
LayerElement(polygon)
getOutline(bbox,detail)

TA

Highway

SecondaryRoad

State

County

Bruegge/Software

River

Lake

15-413 Software Engineering Fall 1999

15

GIS Object Model: After

-

Layer

+label :String

* elements

+Layer(label :String)
+getOutline(bbox:Rect2D,
detail:double):

Enumeration(LayerElement)

LayerElement

+label :String

+LayerElement(pl:PolyLine)

+getOutline(bbox:Rect2D,
detail:double):
Enumeration(PolyLine)

1
1 polyline

Point

PolyLine

+label :String

-X,y:-double
—-1nDetaillLevels:Set
-notlnDetaillLevel :Set

+PolyLine()
+getPoints():

+Point(x,y:double)
+excludelnLevel (level :double)

+excludeFromLevel (level :double)

Enumeration(Point)

* points Q *

Bruegge/Software

15-413 Software Engineering Fall 1999

16

la. Service Specification: Add Type Signatures

Hasht abl e

-nunEl enent s: i nt

+put ()

+get ()

+r enove()
+cont ai nsKey/()
+si ze()

Bruegge/Software

Hasht abl e

-nunEl enent s: i nt

+put (key: Obj ect, entry: Obj ect)
+get (key: Qbj ect) : bj ect
+renove(key: Cbj ect)

+cont ai nsKey(key: Qbj ect) : bool ean
+size():int

15-413 Software Engineering Fall 1999 17

1b. Service Specification: Add Visibility

UML defines three levels of visibility:
e Private (= Java private):

— Private attributes/operations can be accessed/invoked only within
the class in which they are defined.

— Private attributes/operations cannot be accessed by subclasses or
other classes.

» Protected (nothing comparable in Java):

— Protected attributes/operations can be accessed by the class in
which they are defined and in any descendent class.

o Public (= Java public):
— Public attributes/operations can be accessed by any class.

Bruegge/Software 15-413 Software Engineering Fall 1999

18

Information Hiding : Why Encapsulate?

* Encapsulate
— Apply “need to know” principle.

— The less an operation knows . . .
... the less likely it will be affected by any changes
... the easier the class can be changed

 Build firewalls around classes
— Define public interfaces for classes as well as subsystems

e The classic trade-off

— Information hiding vs. efficiency
* Modularity vs. performance

Bruegge/Software 15-413 Software Engineering Fall 1999

19

Information Hiding Design Principles

Encapsulate attributes (fields)

— Only the operations of a class are allowed to manipulate its
attributes

— Access attributes only via operations.
— Example: Java Beans
— (Exception: static finals)

Encapsulate external objects at the subsystem boundary

— Define abstract class interfaces which mediate between system and
external world as well as between subsystems

Use combiners
— Do not apply an operation to the result of another operation.
— Write a new operation that combines the two operations.

Bruegge/Software 15-413 Software Engineering Fall 1999 20

1c. Service Specification: Contracts

e Contracts on a class/method enable caller and callee to share
assumptions about the class/method.

« Contracts include three types of constraints:

— Invariant: A predicate that is “always” true for instances of a class.

Invariants are used to specify consistency constraints among class
attributes.

— Precondition: A predicate that must be true before a specific
operation is invoked. A constraint on a caller.

— Postcondition: A predicate that will be true after a specific
operation has been invoked. A constraint on the operation.

Bruegge/Software 15-413 Software Engineering Fall 1999

21

Specification

UML Object Constraint Language (OCL)
Truth-valued expressions. Not procedural.

Context Hashtable 1nv:
numglements >= 0

context Hashtable::put(key, entry) pre:
containsKey(key)

containsKey(key) and
get(key) = entry and
numElements = numElements@pre + 1

context Hashtable: :put(key, entry) post:

Bruegge/Software 15-413 Software Engineering Fall 1999

22

Specification and OCL

A constraint can also be depicted as a note attached to the
constrained UML element by a dependency relationship.

) <<invariant>> 'ﬁ
2" numElements >=0

. HashTable -°~
<<precondition>> .- _ {1 <<postcondition>> ‘ﬁ
IcontainsKey(key) R QunEl ement s 1 nt) —— get(key) == entry
rput (key, entry: Obj ect) -
<<precondition>> & _ . -fget (key): Obj ect
stk | 1 by o600 boa
oy Xe] i nsKey(key: Qoj ' beal ean
<<precondition>> = _-“ |size():int - -] <<postcondition>> ‘ﬁ
containsKey(key) IcontainsKey(key)

Bruegge/Software 15-413 Software Engineering Fall 1999 23

GIS Specification Example

context Point Inv:
Point.allInstances->forAll(pl,p2:Point |
(pl.x=p2.x and pl.y=p2.y) implies pl=p2)

Bruegge/Software 15-413 Software Engineering Fall 1999

24

1d. Exceptions

LayerElement

+label :String

+LayerElement(pl:PolyLine)

+getOutline(bbox:Rect2D,
detail:double):
Enumeration(PolyLine)

) T~

Bruegge/Software

<<pre>>
bbox.width > 0 and
bbox.height > 0O

~
~
N
~

<<exception>>
ZeroBoundingBox

15-413 Software Engineering Fall 1999

25

Object Design Areas

1. Service specification
— Describes precisely each class interface

2. Component selection
— ldentify off-the-shelf components and additional solution objects

3. Object model restructuring

— Transforms the object design model to improve its
understandability and extensibility

4. Object model optimization

— Transforms the object design model to address performance criteria
such as response time or memory utilization.

Bruegge/Software 15-413 Software Engineering Fall 1999 26

2. Component Selection

The most important reuse decisions — OTS components

2a. Select and adjust class libraries
— Examples: AWT, Swing/JFC, MFC, etc.

2b. Select and adjust application frameworks
— Examples: COM, Beans.

Bruegge/Software 15-413 Software Engineering Fall 1999

27

Example: JFC adjustment

<<JFC>>
- JFrame Issue: Line representation
A | JFC: 1nt[], |_nt[]
- JPanel GIS: Enum(Point)
Approaches:
|
<<JFC>> <<JFIC>> 1. Code translate method
:JScrol lPane JToolbar 2 Place the method:
MapArea
- I\/IapArea Laye r
detarl " Adapter
paintContents()

Bruegge/Software 15-413 Software Engineering Fall 1999 28

Application Frameworks

 Frameworks
« Example: Java Beans e Patterns
— Event model e Libraries
e Serialization
o L ook Components
— Fields
* Private The API Hourglass

e Nomenclature

— Introspection
i The Service
— Persistence 4—1 Interface

e Customization
— Etc.

Bruegge/Software 15-413 Software Engineering Fall 1999 29

Object Design Areas

1. Service specification
— Describes precisely each class interface

2. Component selection
— ldentify off-the-shelf components and additional solution objects

3. Object model restructuring

— Transforms the object design model to improve its
understandability and extensibility

4. Object model optimization

— Transforms the object design model to address performance criteria
such as response time or memory utilization.

Bruegge/Software 15-413 Software Engineering Fall 1999 30

3. Restructuring Activities

3a. Realize assoclations
3b. Increase reuse
3c. Remove implementation dependencies

Bruegge/Software 15-413 Software Engineering Fall 1999

31

3a. Realize Associlations

-

Layer

+label :String

* elements

+Layer(label :String)
+getOutline(bbox:Rect2D,
detail:double):

Enumeration(LayerElement)

LayerElement

+label :String

+LayerElement(pl:PolyLine)
+getOutline(bbox:Rect2D,

Bruegge/Software

detail:double):
Enumeration(PolyLine)

1
1 pl

PolyLine

+label :String

+PolyLine()
+getPoints():
Enumeration(Point)

15-413 Software Engineering Fall 1999

32

3a. Realize Associlations

 Kinds / Dimensions
— 1-1, 1-many, many-many
- 0.1
— Uni-/bi-directional
— Quialified
— Visibility
e Considerations
— Operations needed
— Performance
— References

* Implementation decisions
— Collections
— Use of separate objects

Bruegge/Software 15-413 Software Engineering Fall 1999

33

Unidirectional 1-to-1 Associlation

Object design model befor e transformation

Zoom nActi on

1

MapAr ea

Object design model after transformation

Zoom nActi on

Bruegge/Software

MapAr ea

t ar get Map: MapAr ea

15-413 Software Engineering Fall 1999

34

Bidirectional 1-to-1 Association

Object design model before transformation

Zoom nActi on MapAr ea

Object design model after transformation

Zoom nAction MapAr ea
-t ar get Vap. VRpPAT ea —Zooni n. Zoont NnACTi on
+get Target Vap() +get ZoonT nAct 1 on()
+set Tar get Map(map) +set Zoonl nActi on(acti on)

Bruegge/Software 15-413 Software Engineering Fall 1999 35

1-to-Many Association

Object design model before transformation

Layer

Object design model after transformation

Layer

- | aver El enent s: Set
+el enent s()
+addEl enent (| e)

+r enoveEl enent (| e)

Bruegge/Software

1

Layer El enent

Layer El enent

-cont ai nedl n: Laver
+get Layer ()
+set Layer (|)

15-413 Software Engineering Fall 1999

36

Qualification

1 0..1
Scenari o Si mane Si mul ati onRun
Scenari o Si mul ati onRun
-runs: Map - scenari os: Vect or
+el ement s() +el enent s()
+addRun(si mane, sr: Sinul ati onRun) +addScenari o(s: Scenari 0)
+r enoveRun(si mane, sr: Sinul ati onRun) +r enoveScenari o(s: Scenari o)

Bruegge/Software 15-413 Software Engineering Fall 1999 37

3b. Increase Reuse

Increase Inheritance

 In general:
— Taxonomy reflects understanding of application domain

» Rearrange and adjust classes/operations for inheritance

« Abstract common behavior from class groups
— Detect opportunities to “hoist” behaviors

* A subsystem could become a superclass.

The cost of inheritance
» Performance: dynamic dispatch
e Recompilation

Bruegge/Software 15-413 Software Engineering Fall 1999

38

Building a super class from several classes

 Prepare for inheritance. Refactor operations to have similar
signatures:

— Fewer/mismatched arguments: Overload names
— Mismatched attribute names: Rename attribute, change operations.
 Abstract out the common behavior into supers

— Supers are desirable.
« Better modularity, extensibility and reusability
» Improved configuration management

Bruegge/Software 15-413 Software Engineering Fall 1999 39

Inheritance: Good and Bad

o Kinds of Inheritance
— Interfaces
— Implementations

e The cost of implementation inheritance
— Code rot: Persistence of abstractions beyond their time

— Dependency on small local implementation decisions
» Data representations and invariants
— Example: Jframe and JInternalFrame

* Approaches

— Delegate, don’t inherit
o “Subclass” delegates to the “super”

— Use abstract supers
— Proliferate interfaces

Bruegge/Software 15-413 Software Engineering Fall 1999

40

Refactoring

« Reorganizing hierarchies, signatures, and collaborations
— Without changing overall system function (generally)

o Examples
— Moving from one taxonomy to another taxonomy
— Multiple inheritance to single inheritance
— Relocating methods within a hierarchy

— Renaming to exploit overloading
* l.e., hierarchy transparency at code level

Bruegge/Software 15-413 Software Engineering Fall 1999

41

Object Design Areas

1. Service specification
— Describes precisely each class interface

2. Component selection
— ldentify off-the-shelf components and additional solution objects

3. Object model restructuring

— Transforms the object design model to improve its
understandability and extensibility

4. Object model optimization

— Transforms the object design model to address performance criteria
such as response time or memory utilization.

Bruegge/Software 15-413 Software Engineering Fall 1999 42

Design Optimizations

Important part of the object design phase:

— Requirements analysis model is semantically correct but often too
inefficient if directly implemented.

Optimization activities during object design:
1. Add redundant associations to minimize access cost

2. Rearrange computations for greater efficiency
3. Store derived attributes to save recomputation time

As an object designer you must strike a balance between
efficiency and clarity.

— Optimizations will make your models more obscure

Bruegge/Software 15-413 Software Engineering Fall 1999 43

Design Optimizations

* Necessary part of the object design phase:

— Requirements analysis model -
» Semantically correct
o Well structured (modular)
* Probably too inefficient if directly implemented.

— Object designer: balance between efficiency and clarity.

o Efficiency: Atruntime, compile time, design time.
o Optimizations will make models more obscure
e Optimizations will make programs harder to evolve

Bruegge/Software 15-413 Software Engineering Fall 1999

44

4. Design Optimization Activities

4a. Add redundant associations to reduce access cost

— What are the most frequent operations?
« Sensor data lookup?

— How often is the operation called?
» 30 times/month? 20 times/second?

4b. Turn classes into attributes to avoid recomputation
— Eliminate unnecessary abstraction structure

4c. Cache expensive results
— But can cache coherency be maintained?

4d. Compute lazily
— Delay expensive operations

Bruegge/Software 15-413 Software Engineering Fall 1999

45

4a. Add Redundant Associations

e More generally
— Replace bidirectional by unidirectional
— Replace many-many by 1-many
— Replace 1-many by 1-1
— Add additional associations
e Cache

 \When to do this?

— What is the frequency of traversal?
— What is the relative cost of traversal and the operation performed?
— Can search be replaced by indexing?
» E.g., order or hash objects
— Can indexing be replaced by direct reference?
* E.g., cache references

Bruegge/Software 15-413 Software Engineering Fall 1999 46

4b. Collapse Objects

Can this association be an
attribute?

Can this object be an
attribute of another object?

— Object design choices:

» Implement entity as
embedded attribute

* Implement entity as
separate class with
associations to other classes

e Assoclations
— More flexible than attributes

— Can introduce unnecessary
indirection

5 SSN
erson ID:String
Person
SSN:String

Bruegge/Software 15-413 Software Engineering Fall 1999

47

4c. Cache Expensive Results

Example: How to deal with disconnection in distributed systems?

o Store derived attributes
— Example: Define new classes to store information locally
» Database cache

Issues:

* Derived attributes must be updated when base values change.
— Cache coherency

e Storage costs can Increase

» Approaches to the update problem:
— Periodic computation — Deliberately recompute at intervals (inexact)
— Explicit linking — Modified MVVC. Active value. Consistency check.

Bruegge/Software 15-413 Software Engineering Fall 1999 48

4d. Delay Complex Computations

| mage

filename: String
dat a: byte[]

wi dt h()
hei ght ()
pai nt ()

Image

filename:String

e Avoid calculating results

— Deliver proxies instead

* The essence of lazy
computation

— Drive computation by
demand

width(Q
height()
paint()

ZF

| magePr oxy

I mage

filenane: String

wi dt h()
hei ght ()
pai nt ()

Bruegge/Software

1

Real | mage

dat a: byt e[]

wi dt h()
hei ght ()
pai nt ()

15-413 Software Engineering Fall 1999 49

The Object Designh Document (ODD), 1

e Object design document

— Similar to RAD + ...
... + Additions to object, functional and dynamic models
(from solution domain)
... + Navigational map for object model
... + Javadoc documentation for all classes

Bruegge/Software 15-413 Software Engineering Fall 1999

50

ODD Conventions

» Each subsystem in a system provides a service
— Describe the set of operations provided by the subsystem

o Specifying a service operation as
— Signature: Name of operation, fully typed parameter list and return
type
— Abstract: Describes the operation
— Pre: Precondition for calling the operation (where appropriate)

— Post: Postcondition describing important state after the execution of
the operation (where appropriate)

« Use JavaDoc for the specification of service operations.

Bruegge/Software 15-413 Software Engineering Fall 1999 51

The Object Designh Document (ODD), 2

« ODD Management issues
— Update the RAD models in the RAD?
— Should the ODD be a separate document?

— Target audience for these documents
e Customer?
» Developer?
 Remote team?

— If time is short:
* Focus on the Navigational Map and Javadoc documentation

« Example of acceptable ODD:
— [to be provided]

Bruegge/Software 15-413 Software Engineering Fall 1999

52

Packaging

e Package design into discrete | < Design principles

physical units that can be — Minimize coupling:
EditEd, compiled, |iﬂk6d, » Client-supplier relationships
reused: * Limit number of parameters
* Avoid global data
— Ideally one package per — Maximize cohesiveness:
subsystem _ N
. » Tights associations imply
— But: system decomposition same package
might not favor — Consider the number of interface
implementation. objects offered

 Interface object :
— Denotes a service or API

— For requirements analysis,
system/object design.

e Java interface:

— Implements an interface
object, or not.

Bruegge/Software 15-413 Software Engineering Fall 1999 53

